Segmentation of Agricultural Fields on Microwave C-Band SAR Images

V. Khryashchev, R. Larionov, Nikita Kotov, Alexander Nazarovsky
{"title":"Segmentation of Agricultural Fields on Microwave C-Band SAR Images","authors":"V. Khryashchev, R. Larionov, Nikita Kotov, Alexander Nazarovsky","doi":"10.1109/SIBCON56144.2022.10002999","DOIUrl":null,"url":null,"abstract":"The results of agricultural fields segmentation on microwave SAR images using several architectures of convolutional neural networks are presented. There are used IncFCN, MPResNet architectures, as well as U-Net and DeeplabV3+ modifications with ResNet34, ResNet50, Xception backbones. A study was carried out with various variations of loss functions and optimization algorithms. When training the selected architectures, the IncFCN network with the RMSprop learning algorithm and the Dice loss function showed the best result, and the Dice and F1 metrics reached 0.75 and 0.7, respectively. Based on the architecture showing the best values of the metrics, the calculation of the mRVI and NDVI vegetation indices for microwave and optical data, respectively, is given.","PeriodicalId":265523,"journal":{"name":"2022 International Siberian Conference on Control and Communications (SIBCON)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON56144.2022.10002999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of agricultural fields segmentation on microwave SAR images using several architectures of convolutional neural networks are presented. There are used IncFCN, MPResNet architectures, as well as U-Net and DeeplabV3+ modifications with ResNet34, ResNet50, Xception backbones. A study was carried out with various variations of loss functions and optimization algorithms. When training the selected architectures, the IncFCN network with the RMSprop learning algorithm and the Dice loss function showed the best result, and the Dice and F1 metrics reached 0.75 and 0.7, respectively. Based on the architecture showing the best values of the metrics, the calculation of the mRVI and NDVI vegetation indices for microwave and optical data, respectively, is given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于微波c波段SAR图像的农田分割
给出了几种卷积神经网络结构在微波SAR图像上的农田分割结果。使用了IncFCN, MPResNet架构,以及U-Net和DeeplabV3+与ResNet34, ResNet50, Xception主干的修改。研究了各种变化的损失函数和优化算法。在对所选架构进行训练时,采用RMSprop学习算法和Dice损失函数的IncFCN网络表现出最好的效果,Dice和F1指标分别达到0.75和0.7。在此基础上,给出了微波数据下mRVI和光学数据下NDVI植被指数的计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCMA-LDPC coded communication system Spectral X-ray Detectors Based on Multi-Element Chromium Compensated Gallium Arsenide Sensors and Application Specific Integrated Circuits: : Keynote Paper Devoted 75th Anniversary of the Transistor Optimization of Strip Modal Filters by Random Search Method Room Frequency Response Equalization Using Modified X-Filtered Adaptive Algorithms Laboratory Stand for Study Process Dynamics and Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1