Multiple target tracking using Support Vector Machine and data fusion

S. Vasuhi, V. Vaidehi, Midhunkrishna P R
{"title":"Multiple target tracking using Support Vector Machine and data fusion","authors":"S. Vasuhi, V. Vaidehi, Midhunkrishna P R","doi":"10.1109/ICOAC.2011.6165210","DOIUrl":null,"url":null,"abstract":"In this paper, same target is being sensed by multiple sensors and the main objective is to classify the information into set of data produced for the same target. Once tracks are initialized and confirmed, the number of targets can be estimated; the future predicted position and target velocity can be computed for each track. Fusion is necessary to integrate the data from different sensors and to extract the relevant information of the targets. Support Vector Machines (SVMs) are generally binary classifiers and the multi class problems are solved by combining more than one SVM. This paper proposes a novel scheme for multiple target tracking using SVM classifier. The proposed scheme achieves classification by finding the optimal classification hyperplane with maximal margin. Also Kalman Filter (KF) and 1 Backscan Multiple Hypothesis Tracking (1 BMHT) are used for filtering and association respectively.","PeriodicalId":369712,"journal":{"name":"2011 Third International Conference on Advanced Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Advanced Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOAC.2011.6165210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, same target is being sensed by multiple sensors and the main objective is to classify the information into set of data produced for the same target. Once tracks are initialized and confirmed, the number of targets can be estimated; the future predicted position and target velocity can be computed for each track. Fusion is necessary to integrate the data from different sensors and to extract the relevant information of the targets. Support Vector Machines (SVMs) are generally binary classifiers and the multi class problems are solved by combining more than one SVM. This paper proposes a novel scheme for multiple target tracking using SVM classifier. The proposed scheme achieves classification by finding the optimal classification hyperplane with maximal margin. Also Kalman Filter (KF) and 1 Backscan Multiple Hypothesis Tracking (1 BMHT) are used for filtering and association respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机和数据融合的多目标跟踪
在本文中,同一目标被多个传感器感知,主要目的是将信息分类为同一目标产生的数据集。一旦轨迹初始化并确认,就可以估计目标的数量;可以计算出每条航迹的未来预测位置和目标速度。融合是融合不同传感器数据,提取目标相关信息的必要手段。支持向量机(SVM)一般是二分类器,多类问题是由多个支持向量机组合解决的。提出了一种基于支持向量机分类器的多目标跟踪方案。该方案通过寻找边界最大的最优分类超平面来实现分类。卡尔曼滤波(KF)和1个反向扫描多假设跟踪(BMHT)分别用于滤波和关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker I: Ubiquitous sensing Bio-molecular event extraction using Support Vector Machine Genetically optimized ANFIS based Intelligent Navigation System An efficient clusterhead election algorithm based on maximum weight for MANET A novel business model for enterprise service logic change management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1