Autoencoder Communications with Optimized Interference Suppression for NextG RAN

Kemal Davaslioglu, T. Erpek, Y. Sagduyu
{"title":"Autoencoder Communications with Optimized Interference Suppression for NextG RAN","authors":"Kemal Davaslioglu, T. Erpek, Y. Sagduyu","doi":"10.1109/FNWF55208.2022.00037","DOIUrl":null,"url":null,"abstract":"This paper models an end-to-end communications system for the NextG radio access network (RAN) as an autoencoder (AE) subject to interference effects. The transmitter (coding and modulation) and receiver (demodulation and decoding) are represented as deep neural networks (DNNs) of the encoder and decoder, respectively. The AE communications systems is trained with interference training and randomized smoothing to operate under unknown and dynamic interference (jamming) effects. Compared to conventional communications, the AE communications with interference training and randomized smoothing can achieve up to 36 dB interference suppression with a channel reuse of four for the single antenna case. This paper also extends the AE communications formulation to the multiple-input multiple-output (MIMO) case under interference effects and shows the bit error rate (BER) improvement compared to conventional MIMO communications.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper models an end-to-end communications system for the NextG radio access network (RAN) as an autoencoder (AE) subject to interference effects. The transmitter (coding and modulation) and receiver (demodulation and decoding) are represented as deep neural networks (DNNs) of the encoder and decoder, respectively. The AE communications systems is trained with interference training and randomized smoothing to operate under unknown and dynamic interference (jamming) effects. Compared to conventional communications, the AE communications with interference training and randomized smoothing can achieve up to 36 dB interference suppression with a channel reuse of four for the single antenna case. This paper also extends the AE communications formulation to the multiple-input multiple-output (MIMO) case under interference effects and shows the bit error rate (BER) improvement compared to conventional MIMO communications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化干扰抑制的自编码器通信
本文将NextG无线接入网(RAN)的端到端通信系统建模为受干扰影响的自编码器(AE)。发射器(编码和调制)和接收器(解调和解码)分别表示为编码器和解码器的深度神经网络(dnn)。采用干扰训练和随机平滑对声发射通信系统进行训练,使其能够在未知和动态干扰作用下运行。与传统通信相比,在单天线情况下,经过干扰训练和随机平滑处理的声发射通信可实现36 dB的干扰抑制,信道复用率为4。本文还将声发射通信公式扩展到干扰影响下的多输入多输出(MIMO)情况,并展示了与传统MIMO通信相比,误码率(BER)的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SliceSecure: Impact and Detection of DoS/DDoS Attacks on 5G Network Slices A Score Function Heuristic for Crosstalk- and Fragmentation-Aware Dynamic Routing, Modulation, Core, and Spectrum Allocation in SDM-EONs Machine Learning Aided Design of Sub-Array MIMO Antennas for CubeSats Based on 3D Printed Metallic Ridge Gap Waveguides A Supra-Disciplinary Open Framework of Knowledge to Address the Future Challenges of a Network of Feelings Resource Allocation with Vickrey-Dutch Auctioning Game for C-RAN Fronthaul
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1