3D Convolutional Neural Networks for Tree Detection using Automatically Annotated LiDAR data

A. Gupta, Jonathan Byrne, D. Moloney, Hujun Yin, Simon Watson
{"title":"3D Convolutional Neural Networks for Tree Detection using Automatically Annotated LiDAR data","authors":"A. Gupta, Jonathan Byrne, D. Moloney, Hujun Yin, Simon Watson","doi":"10.31256/ukras17.31","DOIUrl":null,"url":null,"abstract":"Methods In order to identify trees in LiDAR scans, ground points are first identified and filtered using a Progressive Morphological Filter. This filtered scan is then voxelized in a sparse 3D hierarchical data structure, VOLA (Byrne et al., 2017), in order to reduce the input resolution. A 2 bits per voxel approach is used to encode additional information such as colour, intensity and number of returns information.","PeriodicalId":392429,"journal":{"name":"UK-RAS Conference: Robots Working For and Among Us Proceedings","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UK-RAS Conference: Robots Working For and Among Us Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31256/ukras17.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methods In order to identify trees in LiDAR scans, ground points are first identified and filtered using a Progressive Morphological Filter. This filtered scan is then voxelized in a sparse 3D hierarchical data structure, VOLA (Byrne et al., 2017), in order to reduce the input resolution. A 2 bits per voxel approach is used to encode additional information such as colour, intensity and number of returns information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自动注释激光雷达数据的三维卷积神经网络树木检测
方法为了在激光雷达扫描中识别树木,首先使用渐进形态学滤波器对地面点进行识别和滤波。然后将过滤后的扫描体素化为稀疏的3D分层数据结构VOLA (Byrne et al., 2017),以降低输入分辨率。每体素2位的方法用于编码额外的信息,如颜色、强度和返回信息的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning-based Robotic Task Planning for Endovascular Catheterization Parallel Task Planning for Multi-Robot Coordination People’s Perceptions of Task Criticality and Preferences for Robot Autonomy The impact of autonomous vehicles on traffic capacity at an intersection A Smart Contract Model for Agent Societies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1