NeoN: Neuromorphic control for autonomous robotic navigation

J. P. Mitchell, Grant Bruer, Mark E. Dean, J. Plank, G. Rose, Catherine D. Schuman
{"title":"NeoN: Neuromorphic control for autonomous robotic navigation","authors":"J. P. Mitchell, Grant Bruer, Mark E. Dean, J. Plank, G. Rose, Catherine D. Schuman","doi":"10.1109/IRIS.2017.8250111","DOIUrl":null,"url":null,"abstract":"In this paper we describe the use of a new neuromorphic computing framework to implement the navigation system for a roaming, obstacle avoidance robot. Using a Dynamic Adaptive Neural Network Array (DANNA) structure, our TENNLab (Laboratory of Tennesseans Exploring Neural Networks) hardware/software co-design framework and evolutionary optimization (EO) as the training algorithm, we create, train, implement, and test a spiking neural network autonomous robot control system using an array of neuromorphic computing elements built on an FPGA. The simplicity and flexibility of the DANNA neuromorphic computing elements allow for sufficient scale and connectivity on a Xilinx Kintex-7 FPGA to support sensory input and motor control for a mobile robot to navigate a dynamically changing environment. We further describe how more complex capabilities can be added using the same platform, e.g. object identification and tracking.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

In this paper we describe the use of a new neuromorphic computing framework to implement the navigation system for a roaming, obstacle avoidance robot. Using a Dynamic Adaptive Neural Network Array (DANNA) structure, our TENNLab (Laboratory of Tennesseans Exploring Neural Networks) hardware/software co-design framework and evolutionary optimization (EO) as the training algorithm, we create, train, implement, and test a spiking neural network autonomous robot control system using an array of neuromorphic computing elements built on an FPGA. The simplicity and flexibility of the DANNA neuromorphic computing elements allow for sufficient scale and connectivity on a Xilinx Kintex-7 FPGA to support sensory input and motor control for a mobile robot to navigate a dynamically changing environment. We further describe how more complex capabilities can be added using the same platform, e.g. object identification and tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeoN:自主机器人导航的神经形态控制
在本文中,我们描述了使用一个新的神经形态计算框架来实现漫游,避障机器人的导航系统。采用动态自适应神经网络阵列(DANNA)结构,TENNLab(田纳西探索神经网络实验室)硬件/软件协同设计框架和进化优化(EO)作为训练算法,我们使用基于FPGA的神经形态计算元素阵列创建、训练、实现和测试了一个峰值神经网络自主机器人控制系统。DANNA神经形态计算元件的简单性和灵活性允许在赛灵思Kintex-7 FPGA上提供足够的规模和连接性,以支持移动机器人的感官输入和电机控制,以导航动态变化的环境。我们进一步描述了如何使用相同的平台添加更复杂的功能,例如对象识别和跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twin-rotor MIMO system and its control using interval type-2 fuzzy logic Sit-to-stand and stand-to-sit crutch use for lower extremity powered exoskeletons Visual inspection system for smart manufacture of home appliances A novel clutch coupled nonholonomic wheeled mobile robot mechanism to mechanically minimize deduced reckoning error 3D object recognition from tactile data acquired at salient points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1