Oleh Bodunov, Florian Schmidt, André Martin, Andrey Brito, C. Fetzer
{"title":"Real-time Destination and ETA Prediction for Maritime Traffic","authors":"Oleh Bodunov, Florian Schmidt, André Martin, Andrey Brito, C. Fetzer","doi":"10.1145/3210284.3220502","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approach for solving the DEBS Grand Challenge 2018. The challenge asks to provide a prediction for (i) a destination and the (ii) arrival time of ships in a streaming-fashion using Geo-spatial data in the maritime context. Novel aspects of our approach include the use of ensemble learning based on Random Forest, Gradient Boosting Decision Trees (GBDT), XGBoost Trees and Extremely Randomized Trees (ERT) in order to provide a prediction for a destination while for the arrival time, we propose the use of Feed-forward Neural Networks. In our evaluation, we were able to achieve an accuracy of 97% for the port destination classification problem and 90% (in minutes) for the ETA prediction.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
In this paper, we present our approach for solving the DEBS Grand Challenge 2018. The challenge asks to provide a prediction for (i) a destination and the (ii) arrival time of ships in a streaming-fashion using Geo-spatial data in the maritime context. Novel aspects of our approach include the use of ensemble learning based on Random Forest, Gradient Boosting Decision Trees (GBDT), XGBoost Trees and Extremely Randomized Trees (ERT) in order to provide a prediction for a destination while for the arrival time, we propose the use of Feed-forward Neural Networks. In our evaluation, we were able to achieve an accuracy of 97% for the port destination classification problem and 90% (in minutes) for the ETA prediction.