Sparsity-based direction of arrival estimation in the presence of gain/phase uncertainty

Fatemeh Afkhaminia, M. Azghani
{"title":"Sparsity-based direction of arrival estimation in the presence of gain/phase uncertainty","authors":"Fatemeh Afkhaminia, M. Azghani","doi":"10.23919/EUSIPCO.2017.8081684","DOIUrl":null,"url":null,"abstract":"Estimating the direction of arrival (DOA) in sensor arrays is a crucial task in array signal processing systems. This task becomes more difficult when the sensors have gain/phase uncertainty. We have addressed this issue by modeling the problem as a combination of two sparse components, the DOA vector and the gain/phase uncertainty vector. Therefore, a sparse decomposition technique is suggested to jointly recover the DOAs and the sensors with gain/phase uncertainty. The simulation results confirm that the suggested method offers very good performance in different scenarios and is superior to its counterparts.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Estimating the direction of arrival (DOA) in sensor arrays is a crucial task in array signal processing systems. This task becomes more difficult when the sensors have gain/phase uncertainty. We have addressed this issue by modeling the problem as a combination of two sparse components, the DOA vector and the gain/phase uncertainty vector. Therefore, a sparse decomposition technique is suggested to jointly recover the DOAs and the sensors with gain/phase uncertainty. The simulation results confirm that the suggested method offers very good performance in different scenarios and is superior to its counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在增益/相位不确定性时基于稀疏性的到达方向估计
传感器阵列的到达方向估计是阵列信号处理系统中的一项关键任务。当传感器具有增益/相位不确定性时,这项任务变得更加困难。我们通过将问题建模为两个稀疏分量的组合来解决这个问题,即DOA矢量和增益/相位不确定性矢量。因此,提出了一种稀疏分解技术来联合恢复doa和具有增益/相位不确定性的传感器。仿真结果表明,该方法在不同场景下均能提供良好的性能,优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1