A Quick Boosting Charge Pump Circuit for High Density and Low Voltage Flash Memories

T. Tanzawa, Y. Tanaka, T. Tanaka, H. Nakamura, H. Oodaira, K. Sakui, M. Momodomi, S. Shiratake, H. Nakano, Y. Oowaki, S. Watanabe, K. Ohuchi, F. Masuoka
{"title":"A Quick Boosting Charge Pump Circuit for High Density and Low Voltage Flash Memories","authors":"T. Tanzawa, Y. Tanaka, T. Tanaka, H. Nakamura, H. Oodaira, K. Sakui, M. Momodomi, S. Shiratake, H. Nakano, Y. Oowaki, S. Watanabe, K. Ohuchi, F. Masuoka","doi":"10.1109/VLSIC.1994.586217","DOIUrl":null,"url":null,"abstract":"I n t roduct ion T h e demand o f f a s t programmable f l a s h memorfes h a s been d r a s t i c a l l y i n c r e a s i n g f o r t h e replacem c n t of hard d isks by t h e semiconductor mcmories. A s i n g l e power s u p p l y EEPROM s u c h as a N A N D EEPRON [ l ] requi res t o g e n e r a t e a high vol tage on c h i p f o r i t s programming. The r i s i n g time f o r a high vol tage more s igni f icant ly occuples t h e t o t a l programming time, a c c o r d i n g as a h i g h e r d e n s i t y f lash memory increases Its i n t e r n a l c a p a c i t a n c e of t h e w i r i n g s a n d wel l s , and as t h e power s u p p l y moves t o w a r d t h e low v o l t a g e , T h i s p a p e r is devoted t o proposing a new c h a r g e pump c i r c u i t f o r a high dens i ty and low vol tage f l a s h memory which s h o u l d g c n e r a t e a high vol tage on chip v e r y fas t . Conccpt for a New Charge Pump Schcmc F o r t h e c o n v e n t i o n a l c h a r g e pump c i r c u i t . t h e number of s t a g e s connec ted in s e r i e s between t h e power s u p p l y and t h e o u t p u t o f t h e c h a r g e pump c i r c u i t is f i x e d , a s i l l u s t r a t e d In Flg.1 [ Z ] . This flxed number of s t a g e s i s so deslgned as to genera t e a c e r t a i n high v o l t a g e r e q u l r e d f o r programming. However , t h e c h a r g e t r a n s f e r e f f i c i e n c y I i 'P / ICC f o r t h e c h a r g e pump c i r c u i t i s g iven by l / ( n t l ) , where I C C and I P P a re t h e mean input and o u t p u t c u r r e n t s f o r t h e c h a r g e pump c i r c u i t . r e s p e c t i v e l y , and n is t h e number o f s t a g e s connected i n s e r i e s between t h e power supply and t h e o u t p u t of t h e c h a r g e pump c i r c u i t . As a r e s u l t , many s t a g e s connected In s e r i e s are so redundant Lhat t h e convent ional charge pump c i r c u i t no t o n l y c o n s u m e s t o o much power b u t a l s o l o w e r s t h e c h a r g e t r a n s f e r eff ic iency while t h e boosted v o l t age is not much higher than t h e power supply v o l t a g e i n t h e b e g i n n l n g o f o p e r a t i o n . Thereby , I t t a k e s longer time f o r t h e convent ional charge pump c l r c u l t t o g e n e r a t e a des i red v o l t a g e f o r programming when a h i g h e r d e n s i t y EEPROM i n c r e a s e s t h e l o a d c a p a c l t a n c e f o r t h e c h a r g e pump c i r c u l t and t h e power supply vol tage Is lowered. The proposed c h a r g e pump scheme c o n c e p t u a l l y presented in Flg.2 can change t h e number of s t a g e s and t h e capaci tance used f o r c h a r g e pumping. While t h c o u t p u t v o l t a g e I s n o t much h i g h e r t h a n t h e power supply v o l t a g e in t h e beginnlng, t h e number o f s t a g e s I s c o n t r o l l e d t o b e small a n d t h e capaci tance f o r c h a r g e pumping t o b e l a r g e so as t o increase t h e charge t r a n s f e r eff ic iency. According as t h e o u t p u t v o l t a g e I s b o o s t e d , t h e number o f s t a g e s I s i n c r e a s e d and t h e c a p a c i t a n c e f o r c h a r g c pumping 1s d e c r e a s e d s t e p by s t e p . A s a r e s u l t , t h e p r o p o s e d c h a r g e pump scheme o f f e r s a high c h a r g e t r a n s f e r e f f l c l e n c y and r e d u c e s t h e r is ing t i m e of t h e o u t p u t vol tage. 'rhe c o n c e p t f o r a proposed c h a r g e pump schemc prcscntcd above has been achleved by a p a r a l l e l to s e r i a l c o n v e r s i o n s w i t c h e s (SWl.SW2) which c a n chnngc t h e conncct lon between ne lghbor lng stages, a s shown i n F ig .3 . FIg.4 p r e s e n t s t h e c o n c r e t e charge pump c i r c u i t . Thesc two s w i t c h e s a r e c o n -","PeriodicalId":350730,"journal":{"name":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1994.586217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

I n t roduct ion T h e demand o f f a s t programmable f l a s h memorfes h a s been d r a s t i c a l l y i n c r e a s i n g f o r t h e replacem c n t of hard d isks by t h e semiconductor mcmories. A s i n g l e power s u p p l y EEPROM s u c h as a N A N D EEPRON [ l ] requi res t o g e n e r a t e a high vol tage on c h i p f o r i t s programming. The r i s i n g time f o r a high vol tage more s igni f icant ly occuples t h e t o t a l programming time, a c c o r d i n g as a h i g h e r d e n s i t y f lash memory increases Its i n t e r n a l c a p a c i t a n c e of t h e w i r i n g s a n d wel l s , and as t h e power s u p p l y moves t o w a r d t h e low v o l t a g e , T h i s p a p e r is devoted t o proposing a new c h a r g e pump c i r c u i t f o r a high dens i ty and low vol tage f l a s h memory which s h o u l d g c n e r a t e a high vol tage on chip v e r y fas t . Conccpt for a New Charge Pump Schcmc F o r t h e c o n v e n t i o n a l c h a r g e pump c i r c u i t . t h e number of s t a g e s connec ted in s e r i e s between t h e power s u p p l y and t h e o u t p u t o f t h e c h a r g e pump c i r c u i t is f i x e d , a s i l l u s t r a t e d In Flg.1 [ Z ] . This flxed number of s t a g e s i s so deslgned as to genera t e a c e r t a i n high v o l t a g e r e q u l r e d f o r programming. However , t h e c h a r g e t r a n s f e r e f f i c i e n c y I i 'P / ICC f o r t h e c h a r g e pump c i r c u i t i s g iven by l / ( n t l ) , where I C C and I P P a re t h e mean input and o u t p u t c u r r e n t s f o r t h e c h a r g e pump c i r c u i t . r e s p e c t i v e l y , and n is t h e number o f s t a g e s connected i n s e r i e s between t h e power supply and t h e o u t p u t of t h e c h a r g e pump c i r c u i t . As a r e s u l t , many s t a g e s connected In s e r i e s are so redundant Lhat t h e convent ional charge pump c i r c u i t no t o n l y c o n s u m e s t o o much power b u t a l s o l o w e r s t h e c h a r g e t r a n s f e r eff ic iency while t h e boosted v o l t age is not much higher than t h e power supply v o l t a g e i n t h e b e g i n n l n g o f o p e r a t i o n . Thereby , I t t a k e s longer time f o r t h e convent ional charge pump c l r c u l t t o g e n e r a t e a des i red v o l t a g e f o r programming when a h i g h e r d e n s i t y EEPROM i n c r e a s e s t h e l o a d c a p a c l t a n c e f o r t h e c h a r g e pump c i r c u l t and t h e power supply vol tage Is lowered. The proposed c h a r g e pump scheme c o n c e p t u a l l y presented in Flg.2 can change t h e number of s t a g e s and t h e capaci tance used f o r c h a r g e pumping. While t h c o u t p u t v o l t a g e I s n o t much h i g h e r t h a n t h e power supply v o l t a g e in t h e beginnlng, t h e number o f s t a g e s I s c o n t r o l l e d t o b e small a n d t h e capaci tance f o r c h a r g e pumping t o b e l a r g e so as t o increase t h e charge t r a n s f e r eff ic iency. According as t h e o u t p u t v o l t a g e I s b o o s t e d , t h e number o f s t a g e s I s i n c r e a s e d and t h e c a p a c i t a n c e f o r c h a r g c pumping 1s d e c r e a s e d s t e p by s t e p . A s a r e s u l t , t h e p r o p o s e d c h a r g e pump scheme o f f e r s a high c h a r g e t r a n s f e r e f f l c l e n c y and r e d u c e s t h e r is ing t i m e of t h e o u t p u t vol tage. 'rhe c o n c e p t f o r a proposed c h a r g e pump schemc prcscntcd above has been achleved by a p a r a l l e l to s e r i a l c o n v e r s i o n s w i t c h e s (SWl.SW2) which c a n chnngc t h e conncct lon between ne lghbor lng stages, a s shown i n F ig .3 . FIg.4 p r e s e n t s t h e c o n c r e t e charge pump c i r c u i t . Thesc two s w i t c h e s a r e c o n -
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于高密度低电压快闪存储器的快速升压充电泵电路
半导体存储器取代硬磁盘的需求日益增长。作为 N A N D EEPRON [ l ] 的 EEPROM [ l ] 要求在编程时有较高的容量。大容量时,编程时间会更多地占用编程时间,因为闪存会增加编程时间、因此,我们将致力于开发一种新的高密度、低容量的闪存泵,它可以在芯片上快速实现高容量。新型电荷泵 Schcmc 的概念图在 Flg.1 中,对电源和电荷泵之间的连接数量进行了计算。[ Z ] .这种泵的数量是如此设计的,以至于产生了一种用于编程的高 v o l t a g e r q u l r e d 。然而,用于 c h a r g e pump c i r c u i t 的 c h a r g e t r a n s f e r e f i c i e n c y I i 'P / ICC 由 l / ( n t l ) 给定,其中 I C C 和 I P P 是平均输入量和用于 c h a r g e pump c i r c u i t 的 p u t c u r e n t。n 是连接在电源和 c h a r g e pump c i r c u i t o u t s e r i e s 之间的 s t a g e s 的数量。作为一种新技术 、由于连接在系统中的许多系统都是冗余的,因此通用电荷泵的功率不会太大,而且还能保证系统的正常运行。同时,升压电压也不会比电源电压高出太多。因此 、因此,当 EEPROM 需要编程时,通信充电泵需要更长的时间来完成编程,同时电源电压也会降低。Flg.2 中提出的建议的 c h a r g e 泵方案可以改变 s t a g e 的数量和用于 c h a r g e 泵的容量。虽然与开始时的供电容量相比,泵的数量不会有太大的变化、为了提高充电效率,电网的数量要少,抽水的容量要大。由于泵的容量减少了,泵的数量也减少了,用于抽水的流量也减少了。作为一种新的方法,这种抽水泵方案具有很高的抽水效率,并能有效地控制水量。如图 3 所示,上述拟议的水泵方案已通过一个可在新水泵级之间连接的水泵(SWl.SW2)来实现。图 4 显示了电荷泵的功能。图 4 显示了电荷泵的两级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Circuit Techniques For An 8-ns Ecl 100K Compatible 3.3v 16mb Bicmos Sram With Minimum Operation Voltage Of 2.3v A 15- 150mhz, All-Digital Phase-Locked Loop with 50-Cycle Lock Time for High-Performance Low-Power Microprocessors A Digital Self Compensation Circuit for High Speed D/a Converters A 110 mhz Mpeg2 Variable Length Decoder LSI A 200mhz 16mbit Synchronous Dram With Block Access Mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1