Table-of-Contents Generation on Contemporary Documents

Najah-Imane Bentabet, Rémi Juge, Sira Ferradans
{"title":"Table-of-Contents Generation on Contemporary Documents","authors":"Najah-Imane Bentabet, Rémi Juge, Sira Ferradans","doi":"10.1109/icdar.2019.00025","DOIUrl":null,"url":null,"abstract":"The generation of precise and detailed Table-Of-Contents (TOC) from a document is a problem of major importance for document understanding and information extraction. Despite its importance, it is still a challenging task, especially for non-standardized documents with rich layout information such as commercial documents. In this paper, we present a new neural-based pipeline for TOC generation applicable to any searchable document. Unlike previous methods, we do not use semantic labeling nor assume the presence of parsable TOC pages in the document. Moreover, we analyze the influence of using external knowledge encoded as a template. We empirically show that this approach is only useful in a very low resource environment. Finally, we propose a new domain-specific data set that sheds some light on the difficulties of TOC generation in real-world documents. The proposed method shows better performance than the state-of-the-art on a public data set and on the newly released data set.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdar.2019.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The generation of precise and detailed Table-Of-Contents (TOC) from a document is a problem of major importance for document understanding and information extraction. Despite its importance, it is still a challenging task, especially for non-standardized documents with rich layout information such as commercial documents. In this paper, we present a new neural-based pipeline for TOC generation applicable to any searchable document. Unlike previous methods, we do not use semantic labeling nor assume the presence of parsable TOC pages in the document. Moreover, we analyze the influence of using external knowledge encoded as a template. We empirically show that this approach is only useful in a very low resource environment. Finally, we propose a new domain-specific data set that sheds some light on the difficulties of TOC generation in real-world documents. The proposed method shows better performance than the state-of-the-art on a public data set and on the newly released data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当代文献目录生成
从文档中生成精确、详细的目录(Table-Of-Contents, TOC)是文档理解和信息提取的一个重要问题。尽管它很重要,但它仍然是一项具有挑战性的任务,特别是对于具有丰富布局信息的非标准化文档,如商业文档。在本文中,我们提出了一种新的基于神经的TOC生成管道,适用于任何可搜索的文档。与以前的方法不同,我们不使用语义标记,也不假设文档中存在可解析的TOC页面。此外,我们还分析了使用外部知识编码作为模板的影响。我们的经验表明,这种方法只在资源非常少的环境中有用。最后,我们提出了一个新的特定于领域的数据集,它揭示了现实世界文档中TOC生成的一些困难。该方法在公共数据集和新发布的数据集上都表现出比现有方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Article Segmentation in Digitised Newspapers with a 2D Markov Model ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images DICE: Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis Blind Source Separation Based Framework for Multispectral Document Images Binarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1