Safe-DS: A Domain Specific Language to Make Data Science Safe

Lars Reimann, Günter Kniesel-Wünsche
{"title":"Safe-DS: A Domain Specific Language to Make Data Science Safe","authors":"Lars Reimann, Günter Kniesel-Wünsche","doi":"10.1109/ICSE-NIER58687.2023.00019","DOIUrl":null,"url":null,"abstract":"Due to the long runtime of Data Science (DS) pipelines, even small programming mistakes can be very costly, if they are not detected statically. However, even basic static type checking of DS pipelines is difficult because most are written in Python. Static typing is available in Python only via external linters. These require static type annotations for parameters or results of functions, which many DS libraries do not provide.In this paper, we show how the wealth of Python DS libraries can be used in a statically safe way via Safe-DS, a domain specific language (DSL) for DS. Safe-DS catches conventional type errors plus errors related to range restrictions, data manipulation, and call order of functions, going well beyond the abilities of current Python linters. Python libraries are integrated into Safe-DS via a stub language for specifying the interface of its declarations, and an API-Editor that is able to extract type information from the code and documentation of Python libraries, and automatically generate suitable stubs.Moreover, Safe-DS complements textual DS pipelines with a graphical representation that eases safe development by preventing syntax errors. The seamless synchronization of textual and graphic view lets developers always choose the one best suited for their skills and current task.We think that Safe-DS can make DS development easier, faster, and more reliable, significantly reducing development costs.","PeriodicalId":297025,"journal":{"name":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 45th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER58687.2023.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the long runtime of Data Science (DS) pipelines, even small programming mistakes can be very costly, if they are not detected statically. However, even basic static type checking of DS pipelines is difficult because most are written in Python. Static typing is available in Python only via external linters. These require static type annotations for parameters or results of functions, which many DS libraries do not provide.In this paper, we show how the wealth of Python DS libraries can be used in a statically safe way via Safe-DS, a domain specific language (DSL) for DS. Safe-DS catches conventional type errors plus errors related to range restrictions, data manipulation, and call order of functions, going well beyond the abilities of current Python linters. Python libraries are integrated into Safe-DS via a stub language for specifying the interface of its declarations, and an API-Editor that is able to extract type information from the code and documentation of Python libraries, and automatically generate suitable stubs.Moreover, Safe-DS complements textual DS pipelines with a graphical representation that eases safe development by preventing syntax errors. The seamless synchronization of textual and graphic view lets developers always choose the one best suited for their skills and current task.We think that Safe-DS can make DS development easier, faster, and more reliable, significantly reducing development costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe- ds:一种使数据科学安全的领域特定语言
由于数据科学(DS)管道的运行时间很长,即使是很小的编程错误,如果没有被静态地检测到,也可能是非常昂贵的。然而,即使是DS管道的基本静态类型检查也很困难,因为大多数管道都是用Python编写的。静态类型只能通过外部连接器在Python中使用。这需要对函数的参数或结果进行静态类型注释,而许多DS库不提供这些注释。在本文中,我们展示了如何通过safe -DS以静态安全的方式使用丰富的Python DS库,safe -DS是DS的领域特定语言(DSL)。Safe-DS捕获常规类型错误以及与范围限制、数据操作和函数调用顺序相关的错误,远远超出了当前Python编译器的能力。Python库通过存根语言集成到Safe-DS中,存根语言用于指定其声明的接口,API-Editor能够从Python库的代码和文档中提取类型信息,并自动生成合适的存根。此外,safe -DS用图形表示形式补充了文本DS管道,通过防止语法错误来简化安全开发。文本和图形视图的无缝同步使开发人员能够始终选择最适合他们的技能和当前任务的视图。我们认为Safe-DS可以使DS开发更容易、更快、更可靠,显著降低开发成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis with Bayesian Inference Interpersonal Trust in OSS: Exploring Dimensions of Trust in GitHub Pull Requests Message from the ICSE 2023 General Chair A Novel and Pragmatic Scenario Modeling Framework with Verification-in-the-loop for Autonomous Driving Systems Test-Driven Development Benefits Beyond Design Quality: Flow State and Developer Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1