A deep neural network for audio-visual person recognition

Mohammad Rafiqul Alam, Bennamoun, R. Togneri, Ferdous Sohel
{"title":"A deep neural network for audio-visual person recognition","authors":"Mohammad Rafiqul Alam, Bennamoun, R. Togneri, Ferdous Sohel","doi":"10.1109/BTAS.2015.7358754","DOIUrl":null,"url":null,"abstract":"This paper presents applications of special types of deep neural networks (DNNs) for audio-visual biometrics. A common example is the DBN-DNN that uses the generative weights of deep belief networks (DBNs) to initialize the feature detecting layers of deterministic feed forward DNNs. In this paper, we propose the DBM-DNN that uses the generative weights of deep Boltzmann machines (DBMs) for initialization of DNNs. Then, a softmax layer is added on top and the DNNs are trained discriminatively. Our experimental results show that lower error rates can be achieved using the DBM-DNN compared to the support vector machine (SVM), linear regression-based classifier (LRC) and the DBN-DNN. Experiments were carried out on two publicly available audio-visual datasets: the VidTIMIT and MOBIO.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents applications of special types of deep neural networks (DNNs) for audio-visual biometrics. A common example is the DBN-DNN that uses the generative weights of deep belief networks (DBNs) to initialize the feature detecting layers of deterministic feed forward DNNs. In this paper, we propose the DBM-DNN that uses the generative weights of deep Boltzmann machines (DBMs) for initialization of DNNs. Then, a softmax layer is added on top and the DNNs are trained discriminatively. Our experimental results show that lower error rates can be achieved using the DBM-DNN compared to the support vector machine (SVM), linear regression-based classifier (LRC) and the DBN-DNN. Experiments were carried out on two publicly available audio-visual datasets: the VidTIMIT and MOBIO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于视听人物识别的深度神经网络
本文介绍了特殊类型的深度神经网络(dnn)在视听生物识别中的应用。一个常见的例子是DBN-DNN,它使用深度信念网络(dbn)的生成权值来初始化确定性前馈dnn的特征检测层。在本文中,我们提出了使用深度玻尔兹曼机(DBMs)的生成权值来初始化dnn的DBM-DNN。然后,在上面添加一个softmax层,并对dnn进行判别训练。实验结果表明,与支持向量机(SVM)、基于线性回归的分类器(LRC)和DBN-DNN相比,DBM-DNN可以实现更低的错误率。实验是在VidTIMIT和MOBIO两个公开的视听数据集上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach Combining 3D and 2D for less constrained periocular recognition Pace independent mobile gait biometrics Iris imaging in visible spectrum using white LED On smartphone camera based fingerphoto authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1