A GPU-accelerated two stage visual matching pipeline for image and video retrieval

Hannes Fassold, H. Stiegler, Jakub Rosner, M. Thaler, W. Bailer
{"title":"A GPU-accelerated two stage visual matching pipeline for image and video retrieval","authors":"Hannes Fassold, H. Stiegler, Jakub Rosner, M. Thaler, W. Bailer","doi":"10.1109/CBMI.2015.7153620","DOIUrl":null,"url":null,"abstract":"We propose a two stage visual matching pipeline including a first step using VLAD signatures for filtering results, and a second step which reranks the top results using raw matching of SIFT descriptors. This enables adjusting the tradeoff between high computational cost of matching local descriptors and the insufficient accuracy of compact signatures in many application scenarios. We describe GPU accelerated extraction and matching algorithms for SIFT, which result in a speedup factor of at least 4. The VLAD filtering step reduces the number of images/frames for which the local descriptors need to be matched, thus speeding up retrieval by an additional factor of 9-10 without sacrificing mean average precision over full raw descriptor matching.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a two stage visual matching pipeline including a first step using VLAD signatures for filtering results, and a second step which reranks the top results using raw matching of SIFT descriptors. This enables adjusting the tradeoff between high computational cost of matching local descriptors and the insufficient accuracy of compact signatures in many application scenarios. We describe GPU accelerated extraction and matching algorithms for SIFT, which result in a speedup factor of at least 4. The VLAD filtering step reduces the number of images/frames for which the local descriptors need to be matched, thus speeding up retrieval by an additional factor of 9-10 without sacrificing mean average precision over full raw descriptor matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种gpu加速的两阶段视觉匹配管道,用于图像和视频检索
我们提出了一个两阶段的视觉匹配管道,包括第一步使用VLAD签名过滤结果,第二步使用SIFT描述符的原始匹配对顶级结果进行重新排序。在许多应用场景中,这可以调整匹配局部描述符的高计算成本和紧凑签名的不足准确性之间的权衡。我们描述了GPU加速的SIFT提取和匹配算法,其加速系数至少为4。VLAD过滤步骤减少了需要匹配局部描述符的图像/帧的数量,从而在不牺牲完整原始描述符匹配的平均精度的情况下,将检索速度提高了9-10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1