Optimization of Control Agents Shifts in Public Transportation: Tackling Fare Evasion with Machine-Learning

Jean-Baptiste Delfau, Daphné Pertsekos, M. Chouiten
{"title":"Optimization of Control Agents Shifts in Public Transportation: Tackling Fare Evasion with Machine-Learning","authors":"Jean-Baptiste Delfau, Daphné Pertsekos, M. Chouiten","doi":"10.1109/ICTAI.2018.00070","DOIUrl":null,"url":null,"abstract":"In this article, we present a research project aiming at tackling fare evasion in public transportation by optimizing the action of control agents. We give an overview of an algorithm that combines reinforcement learning techniques with optimization methods in order to predict which are the areas of the network where fraud is particularly high and generate itineraries accordingly. The proposed solution combines public and private data and is intended to be suited for most transportation operators worldwide. Its first deployment territory will be in the region of Paris (2018).","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"409 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we present a research project aiming at tackling fare evasion in public transportation by optimizing the action of control agents. We give an overview of an algorithm that combines reinforcement learning techniques with optimization methods in order to predict which are the areas of the network where fraud is particularly high and generate itineraries accordingly. The proposed solution combines public and private data and is intended to be suited for most transportation operators worldwide. Its first deployment territory will be in the region of Paris (2018).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
公共交通控制主体转移的优化:用机器学习解决逃票问题
在本文中,我们提出了一个研究项目,旨在通过优化控制代理的行为来解决公共交通中的逃票问题。我们概述了一种算法,该算法将强化学习技术与优化方法相结合,以预测网络中哪些区域的欺诈特别高,并相应地生成行程。拟议的解决方案结合了公共和私人数据,旨在适用于全球大多数运输运营商。它的第一个部署区域将是巴黎地区(2018年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Title page i] Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1