Optimizing Xeon Phi for Interactive Data Analysis

C. Byun, J. Kepner, W. Arcand, David Bestor, William Bergeron, M. Hubbell, V. Gadepally, Michael Houle, Michael Jones, Anna Klein, Lauren Milechin, P. Michaleas, J. Mullen, Andrew Prout, Antonio Rosa, S. Samsi, Charles Yee, A. Reuther
{"title":"Optimizing Xeon Phi for Interactive Data Analysis","authors":"C. Byun, J. Kepner, W. Arcand, David Bestor, William Bergeron, M. Hubbell, V. Gadepally, Michael Houle, Michael Jones, Anna Klein, Lauren Milechin, P. Michaleas, J. Mullen, Andrew Prout, Antonio Rosa, S. Samsi, Charles Yee, A. Reuther","doi":"10.1109/HPEC.2019.8916300","DOIUrl":null,"url":null,"abstract":"The Intel Xeon Phi manycore processor is designed to provide high performance matrix computations of the type often performed in data analysis. Common data analysis environments include Matlab, GNU Octave, Julia, Python, and R. Achieving optimal performance of matrix operations within data analysis environments requires tuning the Xeon Phi OpenMP settings, process pinning, and memory modes. This paper describes matrix multiplication performance results for Matlab and GNU Octave over a variety of combinations of process counts and OpenMP threads and Xeon Phi memory modes. These results indicate that using KMP_AFFINITY=granlarity=fine, taskset pinning, and all2all cache memory mode allows both Matlab and GNU Octave to achieve 66% of the practical peak performance for process counts ranging from 1 to 64 and OpenMP threads ranging from 1 to 64. These settings have resulted in generally improved performance across a range of applications and has enabled our Xeon Phi system to deliver significant results in a number of real-world applications.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Intel Xeon Phi manycore processor is designed to provide high performance matrix computations of the type often performed in data analysis. Common data analysis environments include Matlab, GNU Octave, Julia, Python, and R. Achieving optimal performance of matrix operations within data analysis environments requires tuning the Xeon Phi OpenMP settings, process pinning, and memory modes. This paper describes matrix multiplication performance results for Matlab and GNU Octave over a variety of combinations of process counts and OpenMP threads and Xeon Phi memory modes. These results indicate that using KMP_AFFINITY=granlarity=fine, taskset pinning, and all2all cache memory mode allows both Matlab and GNU Octave to achieve 66% of the practical peak performance for process counts ranging from 1 to 64 and OpenMP threads ranging from 1 to 64. These settings have resulted in generally improved performance across a range of applications and has enabled our Xeon Phi system to deliver significant results in a number of real-world applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化Xeon Phi的交互式数据分析
Intel Xeon Phi多核处理器旨在提供数据分析中经常执行的高性能矩阵计算。常见的数据分析环境包括Matlab、GNU Octave、Julia、Python和r。在数据分析环境中实现矩阵操作的最佳性能需要调整Xeon Phi OpenMP设置、进程绑定和内存模式。本文描述了Matlab和GNU Octave在各种进程计数和OpenMP线程组合以及Xeon Phi内存模式下的矩阵乘法性能结果。这些结果表明,使用KMP_AFFINITY=粒度=fine、任务集固定和all2all缓存内存模式,可以使Matlab和GNU Octave在进程数从1到64和OpenMP线程数从1到64的情况下达到66%的实际峰值性能。这些设置在一系列应用程序中普遍提高了性能,并使我们的Xeon Phi系统能够在许多实际应用中提供显着的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1