A Severity Diagnosis Method for Heart Disease based on Fusion Rough Sets

Jiaxin Sun, Xiaoxiang Huang, Yongmei Hu, Zhiping Liu
{"title":"A Severity Diagnosis Method for Heart Disease based on Fusion Rough Sets","authors":"Jiaxin Sun, Xiaoxiang Huang, Yongmei Hu, Zhiping Liu","doi":"10.1145/3399637.3399643","DOIUrl":null,"url":null,"abstract":"In order to accurately diagnosis the severity of heart disease, we proposed a feature selection method by fusing rough sets. We firstly use genetic algorithm and heuristic algorithm based on attribute importance to select features and get the classification accuracy by support vector machine (SVM). Then, we use the two algorithms fused with rough set to select features, and get the classification again. After comparing the classification performances which obtained respectively, we find the classification accuracy of the heuristic algorithm based on attribute importance which fused with rough set has reached 89.125%, which is very close to 90.125% of the optimal solution. The results demonstrate that our method is effective and efficient.","PeriodicalId":248664,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Intelligent Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3399637.3399643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to accurately diagnosis the severity of heart disease, we proposed a feature selection method by fusing rough sets. We firstly use genetic algorithm and heuristic algorithm based on attribute importance to select features and get the classification accuracy by support vector machine (SVM). Then, we use the two algorithms fused with rough set to select features, and get the classification again. After comparing the classification performances which obtained respectively, we find the classification accuracy of the heuristic algorithm based on attribute importance which fused with rough set has reached 89.125%, which is very close to 90.125% of the optimal solution. The results demonstrate that our method is effective and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于融合粗糙集的心脏病严重程度诊断方法
为了准确诊断心脏病的严重程度,提出了一种融合粗糙集的特征选择方法。首先利用遗传算法和基于属性重要度的启发式算法选择特征,然后利用支持向量机(SVM)获得分类精度。然后,我们将这两种算法与粗糙集算法相融合,对特征进行选择,并重新进行分类。对比各自得到的分类性能,发现基于属性重要度的启发式算法与粗糙集融合后的分类准确率达到89.125%,非常接近最优解的90.125%。结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Monitoring of Intestinal Ischemia-reperfusion Injury in Rats by Photoacoustic Tomography Automatic Classification of Plasmodium for Malaria Diagnosis based on Ensemble Neural Network A Framework of Student's-t Mixture Model for Accurate and Robust Point Set Registration In vivo Monitoring Hemodynamic Changes in Finger Vessels Using Photoacoustic Tomography Mammographic Mass Retrieval Using Multi-view Information and Laplacian Score Feature Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1