A ResNet-DNN based Channel Estimation and Equalization Scheme in FBMC/OQAM Systems

Xing Cheng, Dejun Liu, Zhengyu Zhu, Wenzhe Shi, Y. Li
{"title":"A ResNet-DNN based Channel Estimation and Equalization Scheme in FBMC/OQAM Systems","authors":"Xing Cheng, Dejun Liu, Zhengyu Zhu, Wenzhe Shi, Y. Li","doi":"10.1109/WCSP.2018.8555649","DOIUrl":null,"url":null,"abstract":"Due to the intrinsic imaginary interference among subcarriers, the channel estimation problem has become one of the main difficulties of the filter bank multicarrier (FBMC) systems. In this paper, we propose a novel channel estimation scheme based on residual networks (ResNet)-deep neural networks (DNN), called as Res-DNN scheme, for the FBMC systems. In the Res-DNN scheme, the conventional channel estimation and equalization module and the demapping module are replaced by a Res-DNN model of deep learning. Simulation results show that the channel estimation performance of the Res-DNN scheme is greatly superior to other schemes in terms of bit error rate (BER).","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"4576 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Due to the intrinsic imaginary interference among subcarriers, the channel estimation problem has become one of the main difficulties of the filter bank multicarrier (FBMC) systems. In this paper, we propose a novel channel estimation scheme based on residual networks (ResNet)-deep neural networks (DNN), called as Res-DNN scheme, for the FBMC systems. In the Res-DNN scheme, the conventional channel estimation and equalization module and the demapping module are replaced by a Res-DNN model of deep learning. Simulation results show that the channel estimation performance of the Res-DNN scheme is greatly superior to other schemes in terms of bit error rate (BER).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ResNet-DNN的FBMC/OQAM系统信道估计与均衡方案
由于子载波间存在固有虚干扰,信道估计问题已成为滤波器组多载波(FBMC)系统的主要难点之一。在本文中,我们提出了一种新的基于残差网络(ResNet)-深度神经网络(DNN)的信道估计方案,称为Res-DNN方案。在Res-DNN方案中,用深度学习的Res-DNN模型取代了传统的信道估计与均衡模块和解映射模块。仿真结果表明,Res-DNN方案的信道估计性能在误码率(BER)方面明显优于其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Depositing for Energy Harvesting Wireless Communications Experimental Demonstration of Acoustic Inversion Using an AUV Carrying Source Channel Tracking for Uniform Rectangular Arrays in mmWave Massive MIMO Systems Rate Matching and Piecewise Sequence Adaptation for Polar Codes with Reed-Solomon Kernels Utility Maximization for MISO Bursty Interference Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1