{"title":"Graph-based machine learning algorithm with application in data mining","authors":"Shimei Jin, Wei Chen, J. Han","doi":"10.1109/ICRCICN.2017.8234519","DOIUrl":null,"url":null,"abstract":"Machine learning is widely used in various applications such as data mining, computer vision, and bioinformatics owing to the explosion of available data. However, in practice, many data have some missing attributes. The graphic theory serves as a powerful tool for modeling and analyzing many such practical problems, such as networks of communication and data organization. This paper focuses on semi-supervised learning algorithms based on the graph theory, aiming at establishing robust models in the input space with a very limited number of training samples. The use of such algorithm in multiple data mining applications is also discussed.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Machine learning is widely used in various applications such as data mining, computer vision, and bioinformatics owing to the explosion of available data. However, in practice, many data have some missing attributes. The graphic theory serves as a powerful tool for modeling and analyzing many such practical problems, such as networks of communication and data organization. This paper focuses on semi-supervised learning algorithms based on the graph theory, aiming at establishing robust models in the input space with a very limited number of training samples. The use of such algorithm in multiple data mining applications is also discussed.