{"title":"High-speed implementation of Smith-Waterman algorithm for DNA sequence scanning in VLSI","authors":"Chao Cheng, K. Parhi","doi":"10.1109/ACSSC.2008.5074677","DOIUrl":null,"url":null,"abstract":"In this paper, a novel pipelined algorithm is applied in the hardware implementation of Smith-Waterman algorithm. The proposed algorithm can cut down the computation time from O(m+n) to O(m+n/J), where J is the pipeline level, m and n are the lengths of the query sequence and subject sequence respectively. It's obvious that if the length of subject sequence is much larger than the query sequence, i.e., n>>m, the computation of scanning protein sequences will be speeded up by a factor of J.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a novel pipelined algorithm is applied in the hardware implementation of Smith-Waterman algorithm. The proposed algorithm can cut down the computation time from O(m+n) to O(m+n/J), where J is the pipeline level, m and n are the lengths of the query sequence and subject sequence respectively. It's obvious that if the length of subject sequence is much larger than the query sequence, i.e., n>>m, the computation of scanning protein sequences will be speeded up by a factor of J.