Ensemble of binary SVM classifiers based on PCA and LDA feature extraction for intrusion detection

A. Aburomman, M. Reaz
{"title":"Ensemble of binary SVM classifiers based on PCA and LDA feature extraction for intrusion detection","authors":"A. Aburomman, M. Reaz","doi":"10.1109/IMCEC.2016.7867287","DOIUrl":null,"url":null,"abstract":"Feature extraction addresses the problem of finding the most compact and informative set of features. To maximize the effectiveness of each single feature extraction algorithm and to develop an efficient intrusion detection system, an ensemble of Linear Discriminant Analysis (LDA) and Principle Component Analysis (PCA) feature extraction algorithms is implemented. This ensemble PCA-LDA method has led to good results and showed a greater proportion of precision in comparison to a single feature extraction method.","PeriodicalId":218222,"journal":{"name":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCEC.2016.7867287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Feature extraction addresses the problem of finding the most compact and informative set of features. To maximize the effectiveness of each single feature extraction algorithm and to develop an efficient intrusion detection system, an ensemble of Linear Discriminant Analysis (LDA) and Principle Component Analysis (PCA) feature extraction algorithms is implemented. This ensemble PCA-LDA method has led to good results and showed a greater proportion of precision in comparison to a single feature extraction method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA和LDA特征提取的二值支持向量机集成入侵检测
特征提取解决的问题是找到最紧凑和信息量最大的特征集。为了最大限度地提高每种单一特征提取算法的有效性并开发高效的入侵检测系统,实现了线性判别分析(LDA)和主成分分析(PCA)特征提取算法的集成。与单一特征提取方法相比,该集成PCA-LDA方法取得了较好的结果,并显示出更高的精度比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance path following for UAV based on advanced vector field guidance law Design of autonomous underwater vehicle positioning system Temperature field simulation of herringbone grooved bearing based on FLUENT software Docker based overlay network performance evaluation in large scale streaming system Multi-channel automatic calibration system of pressure sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1