Music Information Retrieval Techniques for Determining the Place of Origin of a Music Interpretation

Tomas Kiska, Z. Galaz, Vojtech Zvoncak, Jan Mucha, J. Mekyska, Z. Smékal
{"title":"Music Information Retrieval Techniques for Determining the Place of Origin of a Music Interpretation","authors":"Tomas Kiska, Z. Galaz, Vojtech Zvoncak, Jan Mucha, J. Mekyska, Z. Smékal","doi":"10.1109/ICUMT.2018.8631268","DOIUrl":null,"url":null,"abstract":"Determining the place of origin of the musical compositions is a modern area of research in the field of music information retrieval (MIR). The musical interpretation of one piece carries a variety of author's intentions that influence the musical character of the resulting composition. These aspects may include rhythm, dynamics, timbre, or tonality. This paper introduces a novel methodology for determining the place of origin of a music interpretation based on advanced signal processing and machine learning techniques. For this purpose, we collected a database of 35 different interpretations of Leos Janacek's String Quartet No.1, “Kreutzer Sonat”: IV. Con Moto-Adagio. Employing random forests classifier, we achieved classification accuracy over 97 % using features derived from Mel-frequency cepstral coefficients. This paper proves it is possible to use MRI for determining the origin of a music interpretation with very high accuracy.","PeriodicalId":211042,"journal":{"name":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT.2018.8631268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Determining the place of origin of the musical compositions is a modern area of research in the field of music information retrieval (MIR). The musical interpretation of one piece carries a variety of author's intentions that influence the musical character of the resulting composition. These aspects may include rhythm, dynamics, timbre, or tonality. This paper introduces a novel methodology for determining the place of origin of a music interpretation based on advanced signal processing and machine learning techniques. For this purpose, we collected a database of 35 different interpretations of Leos Janacek's String Quartet No.1, “Kreutzer Sonat”: IV. Con Moto-Adagio. Employing random forests classifier, we achieved classification accuracy over 97 % using features derived from Mel-frequency cepstral coefficients. This paper proves it is possible to use MRI for determining the origin of a music interpretation with very high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音乐信息检索技术确定音乐演绎的原产地
确定音乐作品的原产地是音乐信息检索(MIR)领域的一个现代研究领域。对一首作品的音乐诠释承载着作者的多种意图,这些意图会影响最终作品的音乐特征。这些方面可能包括节奏、动态、音色或调性。本文介绍了一种基于先进信号处理和机器学习技术的新方法,用于确定音乐解释的起源。为此,我们收集了利奥斯·雅纳切克(leo Janacek)第一弦乐四重奏“Kreutzer Sonat”:IV. Con Moto-Adagio的35种不同的解读数据库。使用随机森林分类器,我们使用mel频率倒谱系数衍生的特征实现了97%以上的分类准确率。本文证明了用核磁共振成像来确定音乐解释的起源具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobility Episode Discovery in the Mobile Networks Based on Enhanced Switching Kalman Filter Performance Analysis of the Offloading Scheme in a Fog Computing System Modeling, simulation and implementation of $\pmb{a}$ low- scale poultry farm control system On Value-at-Risk and Expected Shortfall of Financial Asset with Stochastic Pricing From Mobility Analysis to Mobility Hubs Discovery: A Concept Based on Using CDR Data of the Mobile Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1