D. Zorko, B. Černe, J. Duhovnik, R. Zavbi, J. Tavčar
{"title":"Conversion Model for the Design of Steel and Polymer S-Gears","authors":"D. Zorko, B. Černe, J. Duhovnik, R. Zavbi, J. Tavčar","doi":"10.1115/detc2019-97817","DOIUrl":null,"url":null,"abstract":"\n The existing models for the conversion and design of polymer gears are only valid for involute gears. This research was focused on S-gears, a specific type of gear profile which has more favorable contact conditions and greater root thickness when compared to involute gears. S-gears design is currently based on tests, experience, and the use of numerical simulations. Due to the lack of a simple calculation model for designing S-gears, there is a limited number of applications in practice. The goal was to set up a model for the evaluation of the root and flank load-carrying capacity of polymer S-gears. The VDI 2736 guideline was taken as the basis of our conversion model for polymer S-gears. With the introduction of new factors for the calculation of root and flank stress, the VDI 2736 model was upgraded to take into account the specific shape of the S-gear profile. In addition, a model for designing steel S-gears was set up.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"183 S486","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 2019 International Power Transmission and Gearing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The existing models for the conversion and design of polymer gears are only valid for involute gears. This research was focused on S-gears, a specific type of gear profile which has more favorable contact conditions and greater root thickness when compared to involute gears. S-gears design is currently based on tests, experience, and the use of numerical simulations. Due to the lack of a simple calculation model for designing S-gears, there is a limited number of applications in practice. The goal was to set up a model for the evaluation of the root and flank load-carrying capacity of polymer S-gears. The VDI 2736 guideline was taken as the basis of our conversion model for polymer S-gears. With the introduction of new factors for the calculation of root and flank stress, the VDI 2736 model was upgraded to take into account the specific shape of the S-gear profile. In addition, a model for designing steel S-gears was set up.