Jessica Leoni, M. Tanelli, S. Strada, Kaijun Jiang, A. Brusa, A. Proverbio
{"title":"Automatic stimuli classification from ERP data for augmented communication via Brain-Computer Interfaces","authors":"Jessica Leoni, M. Tanelli, S. Strada, Kaijun Jiang, A. Brusa, A. Proverbio","doi":"10.1109/ICHMS49158.2020.9209393","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Brain-computer interfaces (BCIs) are systems initially designed to compensate for motor disabilities affecting people whose control of the muscular system is compromised. However, recent developments open the BCIs market to a wide range of medical and non-medical applications. This raises the need for systems capable of interpreting more and more stimuli, even from different sensory domains. In this work, we design a machine-learning system able to fit both application domains accurately recognizing visual and auditory stimuli starting from the event-related potentials (ERPs) they generate. The obtained results are promising and some practical and realization aspects are discussed.