Massive Connectivity in MIMO-OFDM Systems With Frequency Selectivity Compensation

Wenjung Jiang, Ming Yue, Xiaojun Yuan, Yong Zuo
{"title":"Massive Connectivity in MIMO-OFDM Systems With Frequency Selectivity Compensation","authors":"Wenjung Jiang, Ming Yue, Xiaojun Yuan, Yong Zuo","doi":"10.1109/iccc52777.2021.9580244","DOIUrl":null,"url":null,"abstract":"This paper considers the joint design of device activity detection and channel estimation in multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) based grant-free non-orthogonal multiple access (NOMA) systems. In specific, we leverage the correlation of the channel frequency responses in typical narrow-band massive machine-type communication (mMTC) to establish a blockwise linear channel model. In the proposed channel model, the continuous OFDM subcarriers are divided into several subblocks. A linear function with only two variables (mean and slope) is used to approximate the frequency-selective channel in each sub-block. This significantly reduces the number of variables to be determined in channel estimation. We then formulate the joint active device detection and channel estimation as a Bayesian inference problem. By exploiting the block-sparsity of the channel matrix, an efficient turbo message passing (Turbo- MP) algorithm is developed to resolve the Bayesian inference problem with near- linear complexity. We show that Turbo-MP achieves superior performance over the state-of-the-art algorithms.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper considers the joint design of device activity detection and channel estimation in multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) based grant-free non-orthogonal multiple access (NOMA) systems. In specific, we leverage the correlation of the channel frequency responses in typical narrow-band massive machine-type communication (mMTC) to establish a blockwise linear channel model. In the proposed channel model, the continuous OFDM subcarriers are divided into several subblocks. A linear function with only two variables (mean and slope) is used to approximate the frequency-selective channel in each sub-block. This significantly reduces the number of variables to be determined in channel estimation. We then formulate the joint active device detection and channel estimation as a Bayesian inference problem. By exploiting the block-sparsity of the channel matrix, an efficient turbo message passing (Turbo- MP) algorithm is developed to resolve the Bayesian inference problem with near- linear complexity. We show that Turbo-MP achieves superior performance over the state-of-the-art algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有频率选择性补偿的MIMO-OFDM系统的大规模连接
研究了基于多输入多输出(MIMO)正交频分复用(OFDM)的无授权非正交多址(NOMA)系统中设备活动检测和信道估计的联合设计。具体而言,我们利用典型窄带大规模机器类型通信(mMTC)中信道频率响应的相关性来建立块线性信道模型。在该信道模型中,连续OFDM子载波被划分为若干子块。使用只有两个变量(平均值和斜率)的线性函数来近似每个子块中的频率选择通道。这大大减少了信道估计中需要确定的变量的数量。然后,我们将联合有源设备检测和信道估计表述为贝叶斯推理问题。利用信道矩阵的块稀疏性,提出了一种高效的turbo消息传递(turbo - MP)算法来解决具有近线性复杂性的贝叶斯推理问题。我们表明Turbo-MP比最先进的算法实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Group-oriented Handover Authentication Scheme in MEC-Enabled 5G Networks Joint Task Secure Offloading and Resource Allocation for Multi-MEC Server to Improve User QoE Dueling-DDQN Based Virtual Machine Placement Algorithm for Cloud Computing Systems Predictive Beam Tracking with Cooperative Sensing for Vehicle-to-Infrastructure Communications Age-aware Communication Strategy in Federated Learning with Energy Harvesting Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1