Software programmer management: a machine learning and human computer interaction framework for optimal task assignment

Harry Raymond Joseph
{"title":"Software programmer management: a machine learning and human computer interaction framework for optimal task assignment","authors":"Harry Raymond Joseph","doi":"10.1145/2635868.2661684","DOIUrl":null,"url":null,"abstract":"This paper attempts optimal task assignment at the enterprise-level by assigning complexity metrics to the programming tasks and predicting task completion times for each of these tasks based on a machine learning framework that factors in programmer attributes. The framework also considers real-time programmer state by using a simple EEG device to detect programmer mood. A final task assignment is made using a PDTS solver.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2661684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper attempts optimal task assignment at the enterprise-level by assigning complexity metrics to the programming tasks and predicting task completion times for each of these tasks based on a machine learning framework that factors in programmer attributes. The framework also considers real-time programmer state by using a simple EEG device to detect programmer mood. A final task assignment is made using a PDTS solver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软件程序员管理:一种机器学习和人机交互框架,用于优化任务分配
本文通过为编程任务分配复杂性指标,并基于考虑程序员属性的机器学习框架预测每个任务的任务完成时间,尝试在企业级进行最佳任务分配。该框架还考虑了程序员的实时状态,使用一个简单的脑电图设备来检测程序员的情绪。最后的任务分配是使用PDTS求解器完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omen+: a precise dynamic deadlock detector for multithreaded Java libraries Improving the software testing skills of novices during onboarding through social transparency Counterexample guided abstraction refinement of product-line behavioural models A tool suite for the model-driven software engineering of cyber-physical systems Statistical symbolic execution with informed sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1