Fast subspace-based source localization methods

J. Marot, C. Fossati, S. Bourennane
{"title":"Fast subspace-based source localization methods","authors":"J. Marot, C. Fossati, S. Bourennane","doi":"10.1109/SAM.2008.4606855","DOIUrl":null,"url":null,"abstract":"Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Source localization is based on the spectral matrix algebraic properties. Propagator, and Ermolaev-Gershman (EG) noneigenvector algorithms exhibit a low computational load. Propagator is based on spectral matrix partitioning. EG algorithm obtains an approximation of noise subspace using an adjustable power parameter of the spectral matrix and choosing a threshold value. In this paper, we aim at demonstrating the usefulness of QR and LU factorizations of the spectral matrix to improve these methods. Experiments show that the modified propagator and EG algorithms based on factorized spectral matrix lead to better localization results, compared to the existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于子空间的快速源定位方法
源定位是基于谱矩阵的代数性质。传播算子和Ermolaev-Gershman (EG)非特征向量算法具有较低的计算负荷。传播器是基于谱矩阵划分的。EG算法通过谱矩阵的可调功率参数和阈值的选择获得噪声子空间的近似。在本文中,我们旨在证明谱矩阵的QR分解和LU分解对改进这些方法的有用性。实验表明,与现有方法相比,改进的传播算子和基于分解谱矩阵的EG算法具有更好的定位效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1