An extended Kalman filter for identification of biased sinusoidal signals

M. Yazdanian, M. Mojiri, F. Sheikholeslam
{"title":"An extended Kalman filter for identification of biased sinusoidal signals","authors":"M. Yazdanian, M. Mojiri, F. Sheikholeslam","doi":"10.1109/IRANIANCEE.2012.6292497","DOIUrl":null,"url":null,"abstract":"This paper presents a method to address the problem of presence of a bias component in the input sinusoidal signal of the EKF frequency tracker. The bias component may be intrinsically present in the input signal or may be generated due to temporary system faults or can be generated by measurement devices. A new state space model has been developed for parameter estimation of a biased sinusoidal signal in Gaussian noise using extended Kalman filter (EKF). The proposed model not only has the ability of estimating constant parameters, but also tracks variations in the bias component and frequency. Simulation results demonstrate the desirable performance of the proposed EKF for parameter estimation of a biased sinusoidal signal.","PeriodicalId":308726,"journal":{"name":"20th Iranian Conference on Electrical Engineering (ICEE2012)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Iranian Conference on Electrical Engineering (ICEE2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2012.6292497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a method to address the problem of presence of a bias component in the input sinusoidal signal of the EKF frequency tracker. The bias component may be intrinsically present in the input signal or may be generated due to temporary system faults or can be generated by measurement devices. A new state space model has been developed for parameter estimation of a biased sinusoidal signal in Gaussian noise using extended Kalman filter (EKF). The proposed model not only has the ability of estimating constant parameters, but also tracks variations in the bias component and frequency. Simulation results demonstrate the desirable performance of the proposed EKF for parameter estimation of a biased sinusoidal signal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于偏置正弦信号识别的扩展卡尔曼滤波器
本文提出了一种解决EKF频率跟踪器输入正弦信号中存在偏置分量问题的方法。偏置分量可能固有地存在于输入信号中,也可能由于临时系统故障而产生,或者可以由测量设备产生。提出了一种新的状态空间模型,利用扩展卡尔曼滤波(EKF)对高斯噪声中的偏置正弦信号进行参数估计。该模型不仅具有估计恒定参数的能力,而且能够跟踪偏置分量和频率的变化。仿真结果表明,所提出的EKF对于偏置正弦信号的参数估计具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometrical analysis of altitude estimation error caused by pixel quantization in stereo vision Time-domain MoM for the scattering analysis of thin-wire structures within a ground using band-limited Second-Order Lagrange temporal basis functions Variable-structure position control-a class of fast and robust controllers for synchronous reluctance motor drives Analysis of corona effect on lightning performance of HV overhead transmission line using ATP/EMTP Font recognition using Variogram fractal dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1