Comparing the Accuracy of Classical and Machine Learning Methods in Time Series Forecasting: A Case Study of USA Inflation

Youness Jouilil, M’barek Iaousse
{"title":"Comparing the Accuracy of Classical and Machine Learning Methods in Time Series Forecasting: A Case Study of USA Inflation","authors":"Youness Jouilil, M’barek Iaousse","doi":"10.19139/soic-2310-5070-1767","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of statistical classical methods and machine learning algorithms for time series forecasting notably the Exponential Smoothing, hybrid ARIMA-GARCH model, K-Nearest Neighbors (KNN), Prophet, and Long-Short Term Memory (LSTM). The data set used in this study is related to US inflation and covers the period from 1965 to 2021. The performance of the models was evaluated using different metrics especially Mean Squared Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (Median AE), and Root Mean Squared Error (RMSE). The results of the numerical comparison show that the best performance was achieved by Exponential Smoothing, followed closely by KNN. The results indicate that these two models are well-suited for forecasting inflation in the US. ARIMA-GARCH, LSTM, and Prophet performed relatively poorly in comparison. Overall, the findings of this study can be useful for practitioners in choosing the most suitable method for forecasting inflation in the US in the short-term period.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comparison of statistical classical methods and machine learning algorithms for time series forecasting notably the Exponential Smoothing, hybrid ARIMA-GARCH model, K-Nearest Neighbors (KNN), Prophet, and Long-Short Term Memory (LSTM). The data set used in this study is related to US inflation and covers the period from 1965 to 2021. The performance of the models was evaluated using different metrics especially Mean Squared Error (MSE), Mean Absolute Error (MAE), Median Absolute Error (Median AE), and Root Mean Squared Error (RMSE). The results of the numerical comparison show that the best performance was achieved by Exponential Smoothing, followed closely by KNN. The results indicate that these two models are well-suited for forecasting inflation in the US. ARIMA-GARCH, LSTM, and Prophet performed relatively poorly in comparison. Overall, the findings of this study can be useful for practitioners in choosing the most suitable method for forecasting inflation in the US in the short-term period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较经典方法和机器学习方法在时间序列预测中的准确性:以美国通货膨胀为例
本文介绍了用于时间序列预测的统计经典方法和机器学习算法的比较,特别是指数平滑,混合ARIMA-GARCH模型,k -近邻(KNN),先知和长短期记忆(LSTM)。本研究中使用的数据集与美国的通货膨胀有关,涵盖了1965年至2021年的时期。使用不同的指标评估模型的性能,特别是均方误差(MSE)、平均绝对误差(MAE)、中位数绝对误差(Median AE)和均方根误差(RMSE)。数值比较结果表明,指数平滑算法的性能最好,KNN算法次之。结果表明,这两个模型非常适合于预测美国的通货膨胀。相比之下,ARIMA-GARCH、LSTM和Prophet的表现相对较差。总的来说,本研究的结果可以帮助从业者选择最合适的方法来预测美国短期内的通货膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1