{"title":"Predictions for Non-Contacting Mechanical Face Seal Vibration With External Excitation From Pump Vibration: Part I — Flexibly Mounted Stator","authors":"Clay S. Norrbin, D. Childs","doi":"10.1115/gt2018-77198","DOIUrl":null,"url":null,"abstract":"Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.","PeriodicalId":131756,"journal":{"name":"Volume 7B: Structures and Dynamics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Structures and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2018-77198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Stability and response predictions are presented for a Flexibly Mounted Stator (FMS) mechanical seal ring using the model developed by Childs in 2018. The seal ring is excited by external vibration from the rotor/housing. The model includes a frequency dependent stiffness and damping model for the O-ring and a frequency independent model for the fluid film. The dynamic coefficients depend on both speed and excitation frequency. Data used in defining the model are representative of a typical FMS mechanical seal. Parameters for radius and O-Ring placement are varied. The predictions show an insignificant dependency on speed. The predictions are strongly frequency dependent with a critical speed of 90 kRPM. The FMS is predicted to be stable to frequencies below 140 kRPM. The distance between the O-Ring and seal ring inertia center doz couples lateral and pitch-yaw motion of the seal ring. Overall, if doz is kept small, the seal ring is predicted to not have any stability or response issues.