Set-based Particle Swarm Optimization for Data Clustering

Lienke Brown, A. Engelbrecht
{"title":"Set-based Particle Swarm Optimization for Data Clustering","authors":"Lienke Brown, A. Engelbrecht","doi":"10.1145/3533050.3533057","DOIUrl":null,"url":null,"abstract":"Computational intelligence approaches to data clustering have been successful in producing compact and well-separated clusters. In particular, particle swarm optimization (PSO) is deemed an effective approach to data clustering. This paper develops and evaluates a discrete-valued variation of PSO, namely the set-based PSO (SBPSO) algorithm, to cluster data. The SBPSO algorithm is evaluated on six standard data sets and nine artificially generated data sets. The clustering results of the SBPSO algorithm is compared to the performance of established clustering algorithms and a PSO clustering algorithm. It is concluded that the results of the SBPSO algorithm varies with the data set characteristics. Nonetheless, the SBPSO is deemed a successful approach to clustering data.","PeriodicalId":109214,"journal":{"name":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533050.3533057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Computational intelligence approaches to data clustering have been successful in producing compact and well-separated clusters. In particular, particle swarm optimization (PSO) is deemed an effective approach to data clustering. This paper develops and evaluates a discrete-valued variation of PSO, namely the set-based PSO (SBPSO) algorithm, to cluster data. The SBPSO algorithm is evaluated on six standard data sets and nine artificially generated data sets. The clustering results of the SBPSO algorithm is compared to the performance of established clustering algorithms and a PSO clustering algorithm. It is concluded that the results of the SBPSO algorithm varies with the data set characteristics. Nonetheless, the SBPSO is deemed a successful approach to clustering data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集合的粒子群数据聚类算法
数据聚类的计算智能方法已经成功地产生了紧凑和分离良好的聚类。特别是粒子群算法(PSO)被认为是一种有效的数据聚类方法。本文开发并评估了一种离散值的粒子群算法,即基于集的粒子群算法(SBPSO),用于聚类数据。在6个标准数据集和9个人工生成数据集上对SBPSO算法进行了评估。将SBPSO算法的聚类结果与已有的聚类算法和PSO聚类算法的性能进行了比较。结果表明,SBPSO算法的结果随数据集特征的不同而不同。尽管如此,SBPSO被认为是一种成功的数据聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Hybrid PSO and SQP Algorithm in Optimization of the Retardance of Citrate Coated Ferrofluids Coevolutionary Algorithm for Evolving Competitive Strategies in the Weapon Target Assignment Problem A New Discrete Whale Optimization Algorithm with a Spiral 3-opt Local Search for Solving the Traveling Salesperson Problem N-Gram-Based Machine Learning Approach for Bot or Human Detection from Text Messages Assessing the Quality of Car Racing Controllers in a Virtual Setting under Changed Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1