The 3D-Pitoti Dataset: A Dataset for high-resolution 3D Surface Segmentation

Georg Poier, Markus Seidl, M. Zeppelzauer, Christian Reinbacher, M. Schaich, G. Bellandi, A. Marretta, H. Bischof
{"title":"The 3D-Pitoti Dataset: A Dataset for high-resolution 3D Surface Segmentation","authors":"Georg Poier, Markus Seidl, M. Zeppelzauer, Christian Reinbacher, M. Schaich, G. Bellandi, A. Marretta, H. Bischof","doi":"10.1145/3095713.3095719","DOIUrl":null,"url":null,"abstract":"The development of powerful 3D scanning hardware and reconstruction algorithms has strongly promoted the generation of 3D surface reconstructions in different domains. An area of special interest for such 3D reconstructions is the cultural heritage domain, where surface reconstructions are generated to digitally preserve historical artifacts. While reconstruction quality nowadays is sufficient in many cases, the robust analysis (e.g. segmentation, matching, and classification) of reconstructed 3D data is still an open topic. In this paper, we target the automatic segmentation of high-resolution 3D surface reconstructions of petroglyphs. To foster research in this field, we introduce a fully annotated, large-scale 3D surface dataset including high-resolution meshes, depth maps and point clouds as a novel benchmark dataset, which we make publicly available. Additionally, we provide baseline results for a random forest as well as a convolutional neural network based approach. Results show the complementary strengths and weaknesses of both approaches and point out that the provided dataset represents an open challenge for future research.","PeriodicalId":310224,"journal":{"name":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3095713.3095719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The development of powerful 3D scanning hardware and reconstruction algorithms has strongly promoted the generation of 3D surface reconstructions in different domains. An area of special interest for such 3D reconstructions is the cultural heritage domain, where surface reconstructions are generated to digitally preserve historical artifacts. While reconstruction quality nowadays is sufficient in many cases, the robust analysis (e.g. segmentation, matching, and classification) of reconstructed 3D data is still an open topic. In this paper, we target the automatic segmentation of high-resolution 3D surface reconstructions of petroglyphs. To foster research in this field, we introduce a fully annotated, large-scale 3D surface dataset including high-resolution meshes, depth maps and point clouds as a novel benchmark dataset, which we make publicly available. Additionally, we provide baseline results for a random forest as well as a convolutional neural network based approach. Results show the complementary strengths and weaknesses of both approaches and point out that the provided dataset represents an open challenge for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D- pitoti数据集:用于高分辨率3D表面分割的数据集
强大的三维扫描硬件和重建算法的发展有力地促进了不同领域三维表面重建的生成。这种3D重建的一个特别感兴趣的领域是文化遗产领域,在那里生成表面重建以数字方式保存历史文物。虽然目前在许多情况下重建的质量是足够的,但重建的三维数据的鲁棒分析(如分割、匹配和分类)仍然是一个开放的话题。本文针对高分辨率岩画三维表面重建的自动分割问题进行了研究。为了促进这一领域的研究,我们引入了一个完全注释的大规模3D表面数据集,包括高分辨率网格,深度图和点云,作为一个新的基准数据集,我们公开提供。此外,我们为随机森林和基于卷积神经网络的方法提供了基线结果。结果显示了两种方法的互补优势和弱点,并指出所提供的数据集代表了未来研究的公开挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tag Propagation Approaches within Speaking Face Graphs for Multimodal Person Discovery A free Web API for single and multi-document summarization Visualizing weakly-Annotated Multi-label Mayan Inscriptions with Supervised t-SNE Prediction of User Demographics from Music Listening Habits Detecting adversarial example attacks to deep neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1