An Automatic Voice Conversion Evaluation Strategy Based on Perceptual Background Noise Distortion and Speaker Similarity

Dong-Yan Huang, Lei Xie, Yvonne Siu Wa Lee, Jie Wu, Huaiping Ming, Xiaohai Tian, Shaofei Zhang, Chuang Ding, Mei Li, Nguyen Quy Hy, M. Dong, Haizhou Li
{"title":"An Automatic Voice Conversion Evaluation Strategy Based on Perceptual Background Noise Distortion and Speaker Similarity","authors":"Dong-Yan Huang, Lei Xie, Yvonne Siu Wa Lee, Jie Wu, Huaiping Ming, Xiaohai Tian, Shaofei Zhang, Chuang Ding, Mei Li, Nguyen Quy Hy, M. Dong, Haizhou Li","doi":"10.21437/SSW.2016-8","DOIUrl":null,"url":null,"abstract":"Voice conversion aims to modify the characteristics of one speaker to make it sound like spoken by another speaker without changing the language content. This task has attracted con-siderable attention and various approaches have been proposed since two decades ago. The evaluation of voice conversion approaches, usually through time-intensive subject listening tests, requires a huge amount of human labor. This paper proposes an automatic voice conversion evaluation strategy based on perceptual background noise distortion and speaker similarity. Ex-perimental results show that our automatic evaluation results match the subjective listening results quite well. We further use our strategy to select best converted samples from multiple voice conversion systems and our submission achieves promising results in the voice conversion challenge (VCC2016).","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Voice conversion aims to modify the characteristics of one speaker to make it sound like spoken by another speaker without changing the language content. This task has attracted con-siderable attention and various approaches have been proposed since two decades ago. The evaluation of voice conversion approaches, usually through time-intensive subject listening tests, requires a huge amount of human labor. This paper proposes an automatic voice conversion evaluation strategy based on perceptual background noise distortion and speaker similarity. Ex-perimental results show that our automatic evaluation results match the subjective listening results quite well. We further use our strategy to select best converted samples from multiple voice conversion systems and our submission achieves promising results in the voice conversion challenge (VCC2016).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于感知背景噪声失真和说话人相似度的语音转换自动评价策略
语音转换的目的是在不改变语言内容的情况下,修改一个说话者的特征,使其听起来像另一个说话者所说的话。这项任务引起了相当大的关注,自20年前以来提出了各种方法。语音转换方法的评价,通常通过耗时的主题听力测试,需要大量的人力。提出了一种基于感知背景噪声失真和说话人相似度的语音转换自动评价策略。实验结果表明,自动评价结果与主观聆听结果吻合较好。我们进一步使用我们的策略从多个语音转换系统中选择最佳转换样本,我们的提交在语音转换挑战(VCC2016)中取得了可喜的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1