An efficient indoor location system in WLAN based on Database Partition and Euclidean Distance-Weighted Pearson Correlation Coefficient

Gong Chen, Qiang Liu, Yunkai Wei, Qin Yu
{"title":"An efficient indoor location system in WLAN based on Database Partition and Euclidean Distance-Weighted Pearson Correlation Coefficient","authors":"Gong Chen, Qiang Liu, Yunkai Wei, Qin Yu","doi":"10.1109/COMPCOMM.2016.7924999","DOIUrl":null,"url":null,"abstract":"This paper proposes an indoor location system in WLAN based on fingerprint Database Partition and Euclidean Distance-Weighted Pearson Correlation Coefficient which use a new method of partitioning the fingerprint database is PWNN(Nearest Neighbors based on Pearson correlation coefficient and Distance-weighted). This system includes three stages: offline data collection and pretreatment; Online positioning; Fixed positioning. The first stage partitions the fingerprint database in accordance with the maximum signal strength AP (Access Point) to improve the speed of matching. The second stage uses Pearson correlation coefficient to match the signal fingerprint and select the probability of the collection points, then applies NN algorithm and weighted Euclidean distance to estimate the position. The actual system test proves that the fusion algorithm can effectively improve positioning accuracy and greatly shorten positioning time. Thus, it is an effective and valid indoor positioning method.","PeriodicalId":210833,"journal":{"name":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd IEEE International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPCOMM.2016.7924999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes an indoor location system in WLAN based on fingerprint Database Partition and Euclidean Distance-Weighted Pearson Correlation Coefficient which use a new method of partitioning the fingerprint database is PWNN(Nearest Neighbors based on Pearson correlation coefficient and Distance-weighted). This system includes three stages: offline data collection and pretreatment; Online positioning; Fixed positioning. The first stage partitions the fingerprint database in accordance with the maximum signal strength AP (Access Point) to improve the speed of matching. The second stage uses Pearson correlation coefficient to match the signal fingerprint and select the probability of the collection points, then applies NN algorithm and weighted Euclidean distance to estimate the position. The actual system test proves that the fusion algorithm can effectively improve positioning accuracy and greatly shorten positioning time. Thus, it is an effective and valid indoor positioning method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于欧几里得距离加权Pearson相关系数的无线局域网室内高效定位系统
本文提出了一种基于欧几里得距离加权皮尔逊相关系数和指纹数据库分区的无线局域网室内定位系统,该系统采用了一种新的基于皮尔逊相关系数和距离加权的最近邻指纹数据库分区方法。该系统包括三个阶段:离线数据采集和预处理;在线定位;固定定位。第一阶段根据最大信号强度AP (Access Point)对指纹库进行分区,提高匹配速度。第二阶段利用Pearson相关系数对信号指纹进行匹配,选择采集点的概率,然后利用神经网络算法和加权欧氏距离对采集点位置进行估计。实际系统测试证明,融合算法能有效提高定位精度,大大缩短定位时间。因此,它是一种有效的室内定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure routing in IoT with multi-objective simulated annealing Modeling of TCM packing robot and its kinematics simulation and optimization Iterative decision-directed channel estimation for MIMO-OFDM system A systemic performance evaluation method for Residue Number System A dynamic hierarchical quotient topology model based optimal path finding algorithm in complex networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1