Hans-Wilhelm Hess, Michael Herren, N. Gerber, O. Scheidegger, M. Schär, K. Daneshvar, M. Zumstein, Kate Gerber
{"title":"Automatic quantification of fatty infiltration of the supraspinatus from MRI","authors":"Hans-Wilhelm Hess, Michael Herren, N. Gerber, O. Scheidegger, M. Schär, K. Daneshvar, M. Zumstein, Kate Gerber","doi":"10.29007/xq8m","DOIUrl":null,"url":null,"abstract":"Fat fraction of the rotator cuff muscles has been shown to be a predictor of rotator cuff repair failure. In clinical diagnosis, fat fraction of the affected muscle is typically assessed visually on the oblique 2D Y-view and categorized according to the Goutallier scale on T1 weighted MRI. To enable a quantitative fat fraction measure of the rotator cuff muscles, an automated analysis of the whole muscle and Y-view slice was developed utilizing 2-point Dixon MRI. 3D nn-Unet were trained on water only 2-point Dixon data and corresponding annotations for the automatic segmentation of the supraspinatus, humerus and scapula and the detection of 3 anatomical landmarks for the automatic reconstruction of the Y-view slice. The supraspinatus was segmented with a Dice coefficient of 90% (N=24) and automatic fat fraction measurements with a difference from manual measurements of 1.5 % for whole muscle and 0.6% for Y-view evaluation (N=21) were observed. The presented automatic analysis demonstrates the feasibility of a 3D quantification of fat fraction of the rotator cuff muscles for the investigation of more accurate predictors of rotator cuff repair outcome.","PeriodicalId":385854,"journal":{"name":"EPiC Series in Health Sciences","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC Series in Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/xq8m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fat fraction of the rotator cuff muscles has been shown to be a predictor of rotator cuff repair failure. In clinical diagnosis, fat fraction of the affected muscle is typically assessed visually on the oblique 2D Y-view and categorized according to the Goutallier scale on T1 weighted MRI. To enable a quantitative fat fraction measure of the rotator cuff muscles, an automated analysis of the whole muscle and Y-view slice was developed utilizing 2-point Dixon MRI. 3D nn-Unet were trained on water only 2-point Dixon data and corresponding annotations for the automatic segmentation of the supraspinatus, humerus and scapula and the detection of 3 anatomical landmarks for the automatic reconstruction of the Y-view slice. The supraspinatus was segmented with a Dice coefficient of 90% (N=24) and automatic fat fraction measurements with a difference from manual measurements of 1.5 % for whole muscle and 0.6% for Y-view evaluation (N=21) were observed. The presented automatic analysis demonstrates the feasibility of a 3D quantification of fat fraction of the rotator cuff muscles for the investigation of more accurate predictors of rotator cuff repair outcome.