A Convolutional Framework for Forward and Back-Projection in Fan-Beam Geometry

Kai Zhang, A. Entezari
{"title":"A Convolutional Framework for Forward and Back-Projection in Fan-Beam Geometry","authors":"Kai Zhang, A. Entezari","doi":"10.1109/ISBI.2019.8759285","DOIUrl":null,"url":null,"abstract":"We present a convolutional spline framework for highly efficient and accurate computation of forward model for image reconstruction in fan-beam geometry in X-ray computed tomography. The efficiency of computations makes this framework suitable for large-scale optimization algorithms with on-the-fly, memory-less, computations of the forward and back-projection. Our experiments demonstrate the improvements in accuracy as well as efficiency of our model, specifically for first-order box splines (i.e., pixel-basis) compared to recently developed methods for this purpose, namely Look-up Table-based Ray Integration (LTRI) and Separable Footprints (SF) in 2-D.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"388 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a convolutional spline framework for highly efficient and accurate computation of forward model for image reconstruction in fan-beam geometry in X-ray computed tomography. The efficiency of computations makes this framework suitable for large-scale optimization algorithms with on-the-fly, memory-less, computations of the forward and back-projection. Our experiments demonstrate the improvements in accuracy as well as efficiency of our model, specifically for first-order box splines (i.e., pixel-basis) compared to recently developed methods for this purpose, namely Look-up Table-based Ray Integration (LTRI) and Separable Footprints (SF) in 2-D.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扇形波束几何中正反投影的卷积框架
我们提出了一种卷积样条框架,用于高效准确地计算x射线计算机断层扫描中扇形束几何图像重建的正演模型。计算效率使该框架适用于动态、无内存、正向和反向投影计算的大规模优化算法。我们的实验证明了我们的模型在精度和效率方面的改进,特别是对于一阶盒样条(即基于像素的),与最近开发的用于此目的的方法相比,即基于查找表的射线积分(LTRI)和二维可分离足迹(SF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1