Nina Slamnik-Kriještorac, W. Vandenberghe, Rakshith Kusumakar, Karel Kural, M. Klepper, G. Kakes, L. Velde, J. Márquez-Barja
{"title":"Performance Validation Strategies for 5G-enhanced Transport & Logistics: The 5G-Blueprint Approach","authors":"Nina Slamnik-Kriještorac, W. Vandenberghe, Rakshith Kusumakar, Karel Kural, M. Klepper, G. Kakes, L. Velde, J. Márquez-Barja","doi":"10.1109/FNWF55208.2022.00100","DOIUrl":null,"url":null,"abstract":"A big challenge of autonomous mobility is guaranteeing safety in all possible extreme and unexpected scenarios. For the last 25 years, the sector therefore focused on improving the automation functions. Nevertheless, autonomous mobility is still not part of daily life. The 5G-Blueprint project follows an alternative approach: direct control teleoperation. This concept relies on 5G connectivity to remove the physical coupling between the human driver or sailor and the controlled vehicle or vessel. This way, automation and teleoperation can be combined as complementary technologies, assigning them to different segments of a single trajectory, realizing driverless mobility in a safe, scalable, and cost-efficient manner. However, this mode of operation brings demanding connectivity requirements, such as high uplink bandwidth, low latency and ultra-reliability at the same time, for which the potential of 5G needs to be studied and explored. In this paper, we present our performance validation strategies to pursue 5G-enhanced teleoperation in real-life environment (e.g., public roads, busy sea ports), including some initial results that we collected during the in-country piloting phase.","PeriodicalId":300165,"journal":{"name":"2022 IEEE Future Networks World Forum (FNWF)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Future Networks World Forum (FNWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FNWF55208.2022.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A big challenge of autonomous mobility is guaranteeing safety in all possible extreme and unexpected scenarios. For the last 25 years, the sector therefore focused on improving the automation functions. Nevertheless, autonomous mobility is still not part of daily life. The 5G-Blueprint project follows an alternative approach: direct control teleoperation. This concept relies on 5G connectivity to remove the physical coupling between the human driver or sailor and the controlled vehicle or vessel. This way, automation and teleoperation can be combined as complementary technologies, assigning them to different segments of a single trajectory, realizing driverless mobility in a safe, scalable, and cost-efficient manner. However, this mode of operation brings demanding connectivity requirements, such as high uplink bandwidth, low latency and ultra-reliability at the same time, for which the potential of 5G needs to be studied and explored. In this paper, we present our performance validation strategies to pursue 5G-enhanced teleoperation in real-life environment (e.g., public roads, busy sea ports), including some initial results that we collected during the in-country piloting phase.