Content Delivery Networks - Q-Learning Approach for Optimization of the Network Cost and the Cache Hit Ratio

Diego Felix de Almeida, Jason Yen, Michal Aibin
{"title":"Content Delivery Networks - Q-Learning Approach for Optimization of the Network Cost and the Cache Hit Ratio","authors":"Diego Felix de Almeida, Jason Yen, Michal Aibin","doi":"10.1109/CCECE47787.2020.9255813","DOIUrl":null,"url":null,"abstract":"With an increasing demand for web content delivery, it is necessary to optimize the CAPEX and OPEX costs of the Content Delivery Networks. Ideally, all web content to be requested should be stored in local cache nodes at all times. However, the content demand varies across space and time. In this paper, we propose a Content Delivery Network model that allows us to choose the best trade-off between costs and cache hit ratio.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With an increasing demand for web content delivery, it is necessary to optimize the CAPEX and OPEX costs of the Content Delivery Networks. Ideally, all web content to be requested should be stored in local cache nodes at all times. However, the content demand varies across space and time. In this paper, we propose a Content Delivery Network model that allows us to choose the best trade-off between costs and cache hit ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内容分发网络——网络成本和缓存命中率优化的q -学习方法
随着网络内容交付需求的增加,有必要优化内容交付网络的资本支出和运营成本。理想情况下,所有被请求的web内容应该始终存储在本地缓存节点中。然而,内容需求因时空而异。在本文中,我们提出了一个内容交付网络模型,该模型允许我们在成本和缓存命中率之间做出最佳权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Control of Force, Position, and Contour for an Excavator with Co-simulation Dual-Modality Cardiac Data Real-Time Rendering and Synchronization in Web Browsers FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis A New Capacitive MEMS Flow Sensor for Industrial Gas Transport Monitoring Applications Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1