WSN Scheduling for Energy-Efficient Correction of Environmental Modelling

Ahmed Boubrima, A. Boukerche, Walid Bechkit, H. Rivano
{"title":"WSN Scheduling for Energy-Efficient Correction of Environmental Modelling","authors":"Ahmed Boubrima, A. Boukerche, Walid Bechkit, H. Rivano","doi":"10.1109/MASS.2018.00061","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSN) are widely used in environmental applications where the aim is to sense a physical parameter such as temperature, humidity, air pollution, etc. Most existing WSN-based environmental monitoring systems use data interpolation based on sensor measurements in order to construct the spatiotemporal field of physical parameters. However, these fields can be also approximated using physical models which simulate the dynamics of physical phenomena. In this paper, we focus on the use of wireless sensor networks for the aim of correcting the physical model errors rather than interpolating sensor measurements. We tackle the activity scheduling problem and design an optimization model and a heuristic algorithm in order to select the sensor nodes that should be turned off to extend the lifetime of the network. Our approach is based on data assimilation which allows us to use both measurements and the physical model outputs in the estimation of the spatiotemporal field. We evaluate our approach in the context of air pollution monitoring while using a dataset from the Lyon city, France and considering the characteristics of a monitoring system developed in our lab. We analyze the impact of the nodes' characteristics on the network lifetime and derive guidelines on the optimal scheduling of air pollution sensors.","PeriodicalId":146214,"journal":{"name":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2018.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Wireless sensor networks (WSN) are widely used in environmental applications where the aim is to sense a physical parameter such as temperature, humidity, air pollution, etc. Most existing WSN-based environmental monitoring systems use data interpolation based on sensor measurements in order to construct the spatiotemporal field of physical parameters. However, these fields can be also approximated using physical models which simulate the dynamics of physical phenomena. In this paper, we focus on the use of wireless sensor networks for the aim of correcting the physical model errors rather than interpolating sensor measurements. We tackle the activity scheduling problem and design an optimization model and a heuristic algorithm in order to select the sensor nodes that should be turned off to extend the lifetime of the network. Our approach is based on data assimilation which allows us to use both measurements and the physical model outputs in the estimation of the spatiotemporal field. We evaluate our approach in the context of air pollution monitoring while using a dataset from the Lyon city, France and considering the characteristics of a monitoring system developed in our lab. We analyze the impact of the nodes' characteristics on the network lifetime and derive guidelines on the optimal scheduling of air pollution sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境建模节能校正的WSN调度
无线传感器网络(WSN)广泛应用于环境应用,其目的是感知物理参数,如温度、湿度、空气污染等。现有的基于wsn的环境监测系统大多采用基于传感器测量的数据插值来构建物理参数的时空场。然而,这些场也可以用模拟物理现象动力学的物理模型来近似。在本文中,我们重点关注无线传感器网络的使用,目的是纠正物理模型误差,而不是插值传感器测量。针对网络活动调度问题,设计了优化模型和启发式算法,以选择需要关闭的传感器节点,从而延长网络的生命周期。我们的方法是基于数据同化,这使我们能够在时空场的估计中同时使用测量和物理模型输出。我们在空气污染监测的背景下评估我们的方法,同时使用来自法国里昂市的数据集,并考虑到我们实验室开发的监测系统的特点。我们分析了节点特性对网络寿命的影响,并给出了空气污染传感器的最优调度准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning Based Urban Post-Accidental Congestion Prediction BF-IoT: Securing the IoT Networks via Fingerprinting-Based Device Authentication Achieving Energy Efficiency Through Dynamic Computing Offloading in Mobile Edge-Clouds A Fusion Method of Multiple Sensors Data on Panorama Video for Airport Surface Surveillance Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1