Lossless Compression of Internal Files in Parallel Reservoir Simulation

M. Rogowski, Suha N. Kayum, F. Mannuß
{"title":"Lossless Compression of Internal Files in Parallel Reservoir Simulation","authors":"M. Rogowski, Suha N. Kayum, F. Mannuß","doi":"10.1109/HPEC.2019.8916298","DOIUrl":null,"url":null,"abstract":"In parallel reservoir simulation, massively sized files are written recurrently throughout a simulation run. A method is developed to compress the distributed data to be written during the simulation run and to output it to a single compressed file. Evaluation of several compression algorithms on a range of simulation models is performed. The presented method results in 3x file size reduction and a decrease in the total application runtime.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In parallel reservoir simulation, massively sized files are written recurrently throughout a simulation run. A method is developed to compress the distributed data to be written during the simulation run and to output it to a single compressed file. Evaluation of several compression algorithms on a range of simulation models is performed. The presented method results in 3x file size reduction and a decrease in the total application runtime.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行油藏模拟中内部文件的无损压缩
在并行油藏模拟中,在整个模拟运行过程中反复写入大量文件。提出了一种将仿真运行过程中写入的分布式数据进行压缩并输出到单个压缩文件的方法。在一系列仿真模型上对几种压缩算法进行了评估。所提出的方法使文件大小减少了3倍,并减少了整个应用程序运行时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1