An improved ant colony optimization for path planning with multiple UAVs

Jing Li, Yonghua Xiong, Jinhua She
{"title":"An improved ant colony optimization for path planning with multiple UAVs","authors":"Jing Li, Yonghua Xiong, Jinhua She","doi":"10.1109/ICM46511.2021.9385695","DOIUrl":null,"url":null,"abstract":"As exploiting unmanned aerial vehicles (UAVs) as mobile elements is a new research trend recently, approximation algorithms to solve path planning problems for UAVs are promising approaches. This paper present a solution for the problem of minimum mission time to cover a set of target points in the surveillance area with multiple UAVs. In this methodology, we propose an improved ant colony optimization (ACO) combining ACO with greedy strategy. The main purpose is to find the optimal number of UAVs and to plan the paths of the minimum mission time. Simulation results demonstrate the validity and the superiority of the proposed algorithm.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

As exploiting unmanned aerial vehicles (UAVs) as mobile elements is a new research trend recently, approximation algorithms to solve path planning problems for UAVs are promising approaches. This paper present a solution for the problem of minimum mission time to cover a set of target points in the surveillance area with multiple UAVs. In this methodology, we propose an improved ant colony optimization (ACO) combining ACO with greedy strategy. The main purpose is to find the optimal number of UAVs and to plan the paths of the minimum mission time. Simulation results demonstrate the validity and the superiority of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多无人机路径规划的改进蚁群算法
利用无人机作为移动单元是近年来研究的一个新趋势,逼近算法是解决无人机路径规划问题的一种很有前途的方法。针对多架无人机在监视区域内覆盖一组目标点时任务时间最短的问题,提出了一种解决方案。在此方法中,我们提出了一种将蚁群优化与贪婪策略相结合的改进蚁群优化方法。其主要目的是寻找最优的无人机数量和规划最短任务时间的路径。仿真结果验证了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision-Based Rapid Target Tracking Method for Trajectories Estimation and Actuator Parameter Uncertainties for Asteroid Flyby Problem Hybrid identification with time-series data and frequency response data for accurate estimation of linear characteristics Study on how to remove the rope traction device on the overhead distribution lines Adaptive Robust Motion Control of Series Elastic Actuator with Unmatched Uncertainties Modeling and Control of Stable Limit Cycle Walking on Floating Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1