Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space

M. Degiacomi
{"title":"Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space","authors":"M. Degiacomi","doi":"10.2139/ssrn.3213915","DOIUrl":null,"url":null,"abstract":"Flexibility is often a key determinant of protein function. To elucidate the link between their molecular structure and role in an organism, computational techniques such as molecular dynamics can be leveraged to characterize their conformational space. Extensive sampling is, however, required to obtain reliable results, useful to rationalize experimental data or predict outcomes before experiments are carried out. We demonstrate that a generative neural network trained on protein structures produced by molecular simulation can be used to obtain new, plausible conformations complementing pre-existing ones. To demonstrate this, we show that a trained neural network can be exploited in a protein-protein docking scenario to account for broad hinge motions taking place upon binding. Overall, this work shows that neural networks can be used as an exploratory tool for the study of molecular conformational space.","PeriodicalId":271946,"journal":{"name":"Z--BiochemRN: Protein Folding (Proteins) (Topic)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Z--BiochemRN: Protein Folding (Proteins) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3213915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Flexibility is often a key determinant of protein function. To elucidate the link between their molecular structure and role in an organism, computational techniques such as molecular dynamics can be leveraged to characterize their conformational space. Extensive sampling is, however, required to obtain reliable results, useful to rationalize experimental data or predict outcomes before experiments are carried out. We demonstrate that a generative neural network trained on protein structures produced by molecular simulation can be used to obtain new, plausible conformations complementing pre-existing ones. To demonstrate this, we show that a trained neural network can be exploited in a protein-protein docking scenario to account for broad hinge motions taking place upon binding. Overall, this work shows that neural networks can be used as an exploratory tool for the study of molecular conformational space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
耦合分子动力学和深度学习挖掘蛋白质构象空间
柔韧性通常是蛋白质功能的关键决定因素。为了阐明它们的分子结构和在生物体中的作用之间的联系,可以利用分子动力学等计算技术来表征它们的构象空间。然而,为了获得可靠的结果,在进行实验之前对实验数据进行合理化或预测结果是有用的,需要广泛的抽样。我们证明了通过分子模拟产生的蛋白质结构训练的生成神经网络可以用来获得新的、合理的构象,以补充已有的构象。为了证明这一点,我们展示了一个训练好的神经网络可以在蛋白质对接场景中被利用来解释在结合时发生的宽铰链运动。总的来说,这项工作表明神经网络可以用作研究分子构象空间的探索性工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1