SnappyData: a hybrid system for transactions, analytics, and streaming: demo

Jags Ramnarayan, Sudhir Menon, S. Wale, Hemant Bhanawat
{"title":"SnappyData: a hybrid system for transactions, analytics, and streaming: demo","authors":"Jags Ramnarayan, Sudhir Menon, S. Wale, Hemant Bhanawat","doi":"10.1145/2933267.2933295","DOIUrl":null,"url":null,"abstract":"An increasing number of applications rely on workflows that involve (1) continuous stream processing, (2) transactional and write-heavy workloads, and (3) interactive SQL analytics. These applications need to consume high-velocity streams to trigger real-time alerts, ingest them into a write-optimized store, and perform OLAP-style analytics to derive deep insight quickly. Consequently, the demand for mixed workloads has resulted in several composite data architectures, exemplified in the \"lambda\" architecture, requiring multiple systems to be stitched together---an exercise that can be hard, time consuming and expensive. Instead, our system, SnappyData, fulfills this promise by (i) enabling streaming, transactions and interactive analytics in a single unifying system---rather than stitching different solutions---and (ii) delivering true interactive speeds via a state-of-the-art approximate query engine that leverages a multitude of synopses as well as the full dataset.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"29 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An increasing number of applications rely on workflows that involve (1) continuous stream processing, (2) transactional and write-heavy workloads, and (3) interactive SQL analytics. These applications need to consume high-velocity streams to trigger real-time alerts, ingest them into a write-optimized store, and perform OLAP-style analytics to derive deep insight quickly. Consequently, the demand for mixed workloads has resulted in several composite data architectures, exemplified in the "lambda" architecture, requiring multiple systems to be stitched together---an exercise that can be hard, time consuming and expensive. Instead, our system, SnappyData, fulfills this promise by (i) enabling streaming, transactions and interactive analytics in a single unifying system---rather than stitching different solutions---and (ii) delivering true interactive speeds via a state-of-the-art approximate query engine that leverages a multitude of synopses as well as the full dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SnappyData:一个用于事务、分析和流媒体的混合系统:演示
越来越多的应用程序依赖于工作流,这些工作流涉及(1)连续流处理,(2)事务性和重写工作负载,以及(3)交互式SQL分析。这些应用程序需要使用高速流来触发实时警报,将它们摄取到写入优化的存储中,并执行olap风格的分析,以快速获得深入的见解。因此,对混合工作负载的需求导致了几种复合数据体系结构,例如“lambda”体系结构,需要将多个系统拼接在一起——这是一项困难、耗时且昂贵的工作。相反,我们的系统SnappyData通过以下方式实现了这一承诺:(i)在一个统一的系统中实现流,交易和交互式分析-而不是拼接不同的解决方案-以及(ii)通过利用大量概要和完整数据集的最先进的近似查询引擎提供真正的交互速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy efficient, context-aware cache coding for mobile information-centric networks High performance top-k processing of non-linear windows over data streams Distributed k-core decomposition and maintenance in large dynamic graphs Experience of event stream processing for top-k queries and dynamic graphs Automating computational placement in IoT environments: doctoral symposium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1