Early-stage Malware and Ransomware Forecasting in the Short-Term Future Using Regression-based Neural Network Technique

Khalid Albulayhi, Q. A. Al-Haija
{"title":"Early-stage Malware and Ransomware Forecasting in the Short-Term Future Using Regression-based Neural Network Technique","authors":"Khalid Albulayhi, Q. A. Al-Haija","doi":"10.1109/CICN56167.2022.10008270","DOIUrl":null,"url":null,"abstract":"In this study, we propose a predictive model for forecasting future ransomware and malware attacks based on the previous time series data from 2005–2021. We use a time-series regression technique that relies on the neural network algorithm to estimate the forecasting of ransomware and malware attacks in future years over time. Our experiment has applied two hidden layers with the optimal parameter (weight and biases). We modify our model in terms of building time series to predict short-term future values up to 2026. To reach the minimum potential training error, we train our model on 60 epochs to achieve Mean Square Error (MSE) at minimum values. We have achieved the highest accuracy of 99% for forecasting malicious activities (ransomware and malware). The predictive model shows a massive increase in ransomware risk. The current lines of defense cannot keep up with the evolution of ransomware to prevent them.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a predictive model for forecasting future ransomware and malware attacks based on the previous time series data from 2005–2021. We use a time-series regression technique that relies on the neural network algorithm to estimate the forecasting of ransomware and malware attacks in future years over time. Our experiment has applied two hidden layers with the optimal parameter (weight and biases). We modify our model in terms of building time series to predict short-term future values up to 2026. To reach the minimum potential training error, we train our model on 60 epochs to achieve Mean Square Error (MSE) at minimum values. We have achieved the highest accuracy of 99% for forecasting malicious activities (ransomware and malware). The predictive model shows a massive increase in ransomware risk. The current lines of defense cannot keep up with the evolution of ransomware to prevent them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于回归神经网络技术的早期恶意软件和勒索软件短期预测
在这项研究中,我们提出了一个预测模型,用于预测未来的勒索软件和恶意软件攻击,该模型基于2005-2021年之前的时间序列数据。我们使用时间序列回归技术,该技术依赖于神经网络算法来估计未来几年勒索软件和恶意软件攻击的预测。我们的实验应用了两个具有最优参数(权重和偏差)的隐藏层。我们根据建立时间序列来修改我们的模型,以预测到2026年的短期未来价值。为了达到最小的潜在训练误差,我们在60个epoch上训练我们的模型,以使均方误差(MSE)达到最小值。我们在预测恶意活动(勒索软件和恶意软件)方面达到了99%的最高准确率。预测模型显示勒索软件风险大幅增加。目前的防御措施无法跟上勒索软件的发展步伐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Downhole Pressure while Tripping A Parallelized Genetic Algorithms approach to Community Energy Systems Planning Application of Artificial Neural Network to Estimate Students Performance in Scholastic Assessment Test A New Intelligent System for Evaluating and Assisting Students in Laboratory Learning Management System Performance Evaluation of Machine Learning Models on Apache Spark: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1