{"title":"Solar PV-thermoelectric generator hybrid system: case studies","authors":"G. Moore, W. Peterson","doi":"10.1109/INTLEC.1988.22367","DOIUrl":null,"url":null,"abstract":"A solar photovoltaic (PV) thermoelectric generator (TEG) hybrid system combines the economics of a solar photovoltaic system with the reliability and heating capability of a thermoelectric generator system. The solar system provides power during seasons with abundant sunshine while the thermoelectric generator system provides power and heat as required during seasons with insufficient solar insolation or during extended periods of inclement weather. The author discusses the principle of operation of a thermoelectric generator and solar PV-TEG hybrid system, and examines two existing sites in northern Canada. It is concluded that, to obtain maximum reliability and still remain cost-effective, the design of a remote power system must be tailored closely to individual site requirements, location, and ambient temperatures. It has been found that at locations where delivered fuel costs become significant and stand-alone solar is not a viable alternative, a solar PV-TEG hybrid system can provide unmatched reliability and economics.<<ETX>>","PeriodicalId":169486,"journal":{"name":"10th International Telecommunications Energy Conference","volume":"35 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Telecommunications Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.1988.22367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A solar photovoltaic (PV) thermoelectric generator (TEG) hybrid system combines the economics of a solar photovoltaic system with the reliability and heating capability of a thermoelectric generator system. The solar system provides power during seasons with abundant sunshine while the thermoelectric generator system provides power and heat as required during seasons with insufficient solar insolation or during extended periods of inclement weather. The author discusses the principle of operation of a thermoelectric generator and solar PV-TEG hybrid system, and examines two existing sites in northern Canada. It is concluded that, to obtain maximum reliability and still remain cost-effective, the design of a remote power system must be tailored closely to individual site requirements, location, and ambient temperatures. It has been found that at locations where delivered fuel costs become significant and stand-alone solar is not a viable alternative, a solar PV-TEG hybrid system can provide unmatched reliability and economics.<>