Learning Components of Computational Models from Texts

M. McShane, S. Nirenburg, B. Jarrell, G. Fantry
{"title":"Learning Components of Computational Models from Texts","authors":"M. McShane, S. Nirenburg, B. Jarrell, G. Fantry","doi":"10.4230/OASIcs.CMN.2015.108","DOIUrl":null,"url":null,"abstract":"The mental models of experts can be encoded in computational cognitive models that can support the functioning of intelligent agents. This paper compares human mental models to computational cognitive models, and explores the extent to which the latter can be acquired automatically from published sources via automatic learning by reading. It suggests that although model components can be automatically learned, published sources lack sufficient information for the compilation of fully specified models that can support sophisticated agent capabilities, such as physiological simulation and reasoning. Such models require hypotheses and educated guessing about unattested phenomena, which can be provided only by humans and are best recorded using knowledge engineering strategies. This work merges past work on cognitive modeling, agent simulation, learning by reading, and narrative structure, and draws examples from the domain of clinical medicine.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2015.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The mental models of experts can be encoded in computational cognitive models that can support the functioning of intelligent agents. This paper compares human mental models to computational cognitive models, and explores the extent to which the latter can be acquired automatically from published sources via automatic learning by reading. It suggests that although model components can be automatically learned, published sources lack sufficient information for the compilation of fully specified models that can support sophisticated agent capabilities, such as physiological simulation and reasoning. Such models require hypotheses and educated guessing about unattested phenomena, which can be provided only by humans and are best recorded using knowledge engineering strategies. This work merges past work on cognitive modeling, agent simulation, learning by reading, and narrative structure, and draws examples from the domain of clinical medicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从文本学习计算模型的组成部分
专家的心智模型可以编码在计算认知模型中,从而支持智能代理的功能。本文将人类心理模型与计算认知模型进行了比较,并探讨了后者可以通过阅读自动学习从出版资源中自动获得的程度。这表明,尽管模型组件可以自动学习,但已发布的来源缺乏足够的信息来编译完全指定的模型,这些模型可以支持复杂的智能体功能,如生理模拟和推理。这些模型需要对未经证实的现象进行假设和有根据的猜测,而这些只能由人类提供,最好使用知识工程策略进行记录。这项工作融合了过去在认知建模、代理模拟、通过阅读学习和叙事结构方面的工作,并从临床医学领域汲取了例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Appraisal of Computational Model for Yorùbá Folktale Narrative Comparing Extant Story Classifiers: Results & New Directions The Love Equation: Computational Modeling of Romantic Relationships in French Classical Drama Governing Narrative Events With Institutional Norms Animacy Detection in Stories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1