Adaptive task-space tracking for robot manipulators with uncertain kinematics and dynamics and without using acceleration

Zhihao Xu, Xuefeng Zhou, Taobo Cheng, Kezheng Sun, Dan Huang
{"title":"Adaptive task-space tracking for robot manipulators with uncertain kinematics and dynamics and without using acceleration","authors":"Zhihao Xu, Xuefeng Zhou, Taobo Cheng, Kezheng Sun, Dan Huang","doi":"10.1109/ROBIO.2017.8324494","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the task-space tracking problem for robot manipulators with uncertain kinematics and dynamics. Imprecise kinematic parameters would cause errors in the solution of inverse kinematics, and the closed-loop system remains nonlinear and coupled. At the same time, task-space velocity or joint acceleration are usually required, which implies an increase of the production cost. Therefore, an adaptive control method is proposed, neither task-space velocity nor joint acceleration are needed. The measurement of task-space velocity is avoided using a low-pass filter, and by defining a second order reference trajectory, the joint acceleration is also eliminated. Using Lyapunov theory, we have proved that the end-effector tracking errors can asymptotically converge to zero. Examples and numeral simulations are provided to validate the effectiveness of the proposed tracking method.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we consider the task-space tracking problem for robot manipulators with uncertain kinematics and dynamics. Imprecise kinematic parameters would cause errors in the solution of inverse kinematics, and the closed-loop system remains nonlinear and coupled. At the same time, task-space velocity or joint acceleration are usually required, which implies an increase of the production cost. Therefore, an adaptive control method is proposed, neither task-space velocity nor joint acceleration are needed. The measurement of task-space velocity is avoided using a low-pass filter, and by defining a second order reference trajectory, the joint acceleration is also eliminated. Using Lyapunov theory, we have proved that the end-effector tracking errors can asymptotically converge to zero. Examples and numeral simulations are provided to validate the effectiveness of the proposed tracking method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不确定运动学和动力学且不考虑加速度的机械臂自适应任务空间跟踪
研究了具有不确定运动学和动力学的机器人的任务空间跟踪问题。不精确的运动学参数会导致运动学逆解的误差,闭环系统仍然是非线性和耦合的。同时,通常需要任务空间速度或关节加速度,这意味着生产成本的增加。为此,提出了一种不需要任务空间速度和关节加速度的自适应控制方法。使用低通滤波器避免了任务空间速度的测量,并通过定义二阶参考轨迹来消除关节加速度。利用李雅普诺夫理论,证明了末端执行器跟踪误差可以渐近收敛于零。通过算例和数值仿真验证了所提跟踪方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Respiratory simulator for robotic respiratory tract treatments Mimicking fly motion tracking and fixation behaviors with a hybrid visual neural network A smooth position-force controller for asbestos removal manipulator A robotized interior work process planning algorithm based on surface minimum coverage set Towards adaptive power consumption estimation for over-actuated unmanned vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1