Multivariate Gaussian RBF‐net for smooth function estimation and variable selection

Arkaprava Roy
{"title":"Multivariate Gaussian RBF‐net for smooth function estimation and variable selection","authors":"Arkaprava Roy","doi":"10.1002/sam.11540","DOIUrl":null,"url":null,"abstract":"Neural networks are routinely used for nonparametric regression modeling. The interest in these models is growing with ever‐increasing complexities in modern datasets. With modern technological advancements, the number of predictors frequently exceeds the sample size in many application areas. Thus, selecting important predictors from the huge pool is an extremely important task for judicious inference. This paper proposes a novel flexible class of single‐layer radial basis functions (RBF) networks. The proposed architecture can estimate smooth unknown regression functions and also perform variable selection. We primarily focus on Gaussian RBF‐net due to its attractive properties. The extensions to other choices of RBF are fairly straightforward. The proposed architecture is also shown to be effective in identifying relevant predictors in a low‐dimensional setting using the posterior samples without imposing any sparse estimation scheme. We develop an efficient Markov chain Monte Carlo algorithm to generate posterior samples of the parameters. We illustrate the proposed method's empirical efficacy through simulation experiments, both in high and low dimensional regression problems. The posterior contraction rate is established with respect to empirical ℓ2 distance assuming that the error variance is unknown, and the true function belongs to a Hölder ball. We illustrate our method in a Human Connectome Project dataset to predict vocabulary comprehension and to identify important edges of the structural connectome.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks are routinely used for nonparametric regression modeling. The interest in these models is growing with ever‐increasing complexities in modern datasets. With modern technological advancements, the number of predictors frequently exceeds the sample size in many application areas. Thus, selecting important predictors from the huge pool is an extremely important task for judicious inference. This paper proposes a novel flexible class of single‐layer radial basis functions (RBF) networks. The proposed architecture can estimate smooth unknown regression functions and also perform variable selection. We primarily focus on Gaussian RBF‐net due to its attractive properties. The extensions to other choices of RBF are fairly straightforward. The proposed architecture is also shown to be effective in identifying relevant predictors in a low‐dimensional setting using the posterior samples without imposing any sparse estimation scheme. We develop an efficient Markov chain Monte Carlo algorithm to generate posterior samples of the parameters. We illustrate the proposed method's empirical efficacy through simulation experiments, both in high and low dimensional regression problems. The posterior contraction rate is established with respect to empirical ℓ2 distance assuming that the error variance is unknown, and the true function belongs to a Hölder ball. We illustrate our method in a Human Connectome Project dataset to predict vocabulary comprehension and to identify important edges of the structural connectome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元高斯RBF - net平滑函数估计和变量选择
神经网络通常用于非参数回归建模。随着现代数据集的复杂性不断增加,对这些模型的兴趣也在增长。随着现代技术的进步,在许多应用领域,预测因子的数量经常超过样本量。因此,从庞大的预测池中选择重要的预测因子是明智推理的一项极其重要的任务。提出了一类新的柔性单层径向基函数网络。所提出的结构可以估计光滑的未知回归函数,也可以进行变量选择。我们主要关注高斯RBF - net,因为它具有吸引人的特性。对RBF的其他选择的扩展相当简单。所提出的结构也被证明是有效的识别相关的预测在低维设置使用后验样本,而不强加任何稀疏估计方案。我们开发了一种有效的马尔可夫链蒙特卡罗算法来生成参数的后验样本。我们通过模拟实验说明了该方法在高维和低维回归问题中的经验有效性。在误差方差未知的情况下,根据经验距离建立后验收缩率,真实函数属于Hölder球。我们在人类连接体项目数据集中说明了我们的方法来预测词汇理解和识别结构连接体的重要边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural interval‐censored survival regression with feature selection Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design Gaussian process selections in semiparametric multi‐kernel machine regression for multi‐pathway analysis An automated alignment algorithm for identification of the source of footwear impressions with common class characteristics Confidence bounds for threshold similarity graph in random variable network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1