Analyses of Kagura musical signals using LMS-based Fourier Analyzer

Satoru Ishibashi, N. Kudoh, H. Kamaya, Y. Tadokoro
{"title":"Analyses of Kagura musical signals using LMS-based Fourier Analyzer","authors":"Satoru Ishibashi, N. Kudoh, H. Kamaya, Y. Tadokoro","doi":"10.1109/TENCON.2016.7848066","DOIUrl":null,"url":null,"abstract":"Musical transcription requires much burden even for specialists in the musical field therefore, many trials of automatic transcription have been being done actively. As musical signals are substantially time varying, we have investigated an LMS-based Fourier analyzer to accommodate time varying characteristics. In this article, frequency response of the above adaptive algorithm is brief! reviewed in order to provide insight of the adaptive algorithm. And then, the analyzing system of Kagura Japanese folk music musical signals, which converts analyzed results to the MIDI format, is described. Finally, results in MIDI format are converted to musical scores by using commercially available software in order to verify the validity of the system.","PeriodicalId":246458,"journal":{"name":"2016 IEEE Region 10 Conference (TENCON)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2016.7848066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Musical transcription requires much burden even for specialists in the musical field therefore, many trials of automatic transcription have been being done actively. As musical signals are substantially time varying, we have investigated an LMS-based Fourier analyzer to accommodate time varying characteristics. In this article, frequency response of the above adaptive algorithm is brief! reviewed in order to provide insight of the adaptive algorithm. And then, the analyzing system of Kagura Japanese folk music musical signals, which converts analyzed results to the MIDI format, is described. Finally, results in MIDI format are converted to musical scores by using commercially available software in order to verify the validity of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lms的傅里叶分析仪分析神乐音乐信号
即使是音乐领域的专家,乐谱抄写也会带来很大的负担,因此人们一直在积极地进行许多自动抄写的试验。由于音乐信号实质上是时变的,我们研究了一种基于lms的傅立叶分析仪来适应时变特性。本文对上述自适应算法的频率响应进行了简要介绍!回顾以提供自适应算法的见解。然后,介绍了神乐日本民乐音乐信号分析系统,将分析结果转换为MIDI格式。最后,使用市售软件将MIDI格式的结果转换为乐谱,以验证系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D printing of a pavlova Application of hybrid artificial neural network algorithm for the prediction of standardized precipitation index GaN based μLED drive circuit for Visible Light Communication (VLC) with improved linearity using on-chip optical feedback Automatic image classification in intravascular optical coherence tomography images A rapid and reliable approach for optimal design of an electromagnetic nanopositioning actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1