Semantic Labeling for Point Cloud Detection and Registration Using the Universal Manifold Embedding: Statistical Analysis

J. Francos
{"title":"Semantic Labeling for Point Cloud Detection and Registration Using the Universal Manifold Embedding: Statistical Analysis","authors":"J. Francos","doi":"10.1109/SSP53291.2023.10208074","DOIUrl":null,"url":null,"abstract":"Detection and registration of point cloud observations are elementary problems in 3-D vision. The Universal Manifold Embedding (UME) is a framework for mapping an observation to a matrix representation which is covariant with the rigid coordinate transformation, while its column space is invariant to the transformation. As point clouds are sets of coordinates with no functional relation imposed on them, adapting the UME framework for point cloud registration requires the definition of a function that assigns a value to each point, invariant to the action of the transformation group. Deep learning methods for point cloud semantic labeling have made it easier to incorporate semantic labels information into point cloud detection and registration. We derive analytic tools for evaluating and optimizing the UME performance in point cloud detection and registration tasks in the presence of labeling errors, when semantic labeling is employed as the transformation-invariant function defined on the point cloud.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"33 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detection and registration of point cloud observations are elementary problems in 3-D vision. The Universal Manifold Embedding (UME) is a framework for mapping an observation to a matrix representation which is covariant with the rigid coordinate transformation, while its column space is invariant to the transformation. As point clouds are sets of coordinates with no functional relation imposed on them, adapting the UME framework for point cloud registration requires the definition of a function that assigns a value to each point, invariant to the action of the transformation group. Deep learning methods for point cloud semantic labeling have made it easier to incorporate semantic labels information into point cloud detection and registration. We derive analytic tools for evaluating and optimizing the UME performance in point cloud detection and registration tasks in the presence of labeling errors, when semantic labeling is employed as the transformation-invariant function defined on the point cloud.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用通用流形嵌入的点云检测和配准的语义标记:统计分析
点云观测值的检测与配准是三维视觉中的基本问题。通用流形嵌入(UME)是一种将观测值映射到矩阵表示的框架,该矩阵表示与刚体坐标变换协变,而其列空间对刚体坐标变换不变。由于点云是没有强加于其上的函数关系的坐标集,因此为点云配准调整UME框架需要定义一个函数,该函数为每个点分配一个值,该值对转换组的动作是不变的。点云语义标注的深度学习方法使得将语义标注信息整合到点云检测和配准中变得更加容易。当语义标记作为点云上定义的变换不变函数时,我们推导了用于评估和优化存在标记错误的点云检测和配准任务中的UME性能的分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1