A proposal of fuzzy modeling on fusion axes considering the data structure

Kosuke Yamamoto, T. Yoshikawa, T. Furuhashi
{"title":"A proposal of fuzzy modeling on fusion axes considering the data structure","authors":"Kosuke Yamamoto, T. Yoshikawa, T. Furuhashi","doi":"10.1109/FUZZ.2003.1209387","DOIUrl":null,"url":null,"abstract":"Fuzzy modeling is known as one of the effective methods to identify unknown non-linear input-output relationships. In gathering information from constructed models or constructing models from known information, the model's understandability becomes essential. This paper defines new axes by fitting distributed data in input space and proposes a fuzzy modeling method considering data structure. This paper calls these axes, \"fusion axes\". The effectiveness of the proposed method is shown through some numerical experiments.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1209387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Fuzzy modeling is known as one of the effective methods to identify unknown non-linear input-output relationships. In gathering information from constructed models or constructing models from known information, the model's understandability becomes essential. This paper defines new axes by fitting distributed data in input space and proposes a fuzzy modeling method considering data structure. This paper calls these axes, "fusion axes". The effectiveness of the proposed method is shown through some numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种考虑数据结构的融合轴模糊建模方法
模糊建模是识别未知非线性输入输出关系的有效方法之一。在从已构建的模型中收集信息或从已知信息中构建模型时,模型的可理解性变得至关重要。本文通过拟合输入空间中的分布式数据来定义新的轴,并提出了一种考虑数据结构的模糊建模方法。本文称这些轴为“融合轴”。数值实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy flow-shop scheduling models based on credibility measure Morphological perceptrons with dendritic structure A validation procedure for fuzzy multiattribute decision making Context dependent information aggregation Traffic engineering with MPLS using fuzzy logic for application in IP networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1