Time Series Analysis for Crime Forecasting Using ARIMA (Autoregressive Integrated Moving Average) Model

Neetu Faujdar, Anant Joshi
{"title":"Time Series Analysis for Crime Forecasting Using ARIMA (Autoregressive Integrated Moving Average) Model","authors":"Neetu Faujdar, Anant Joshi","doi":"10.4018/978-1-7998-2795-5.ch007","DOIUrl":null,"url":null,"abstract":"With massive advancements in the fields of data analysis and data mining, a new importance has been gained by data visualization. Data visualization focuses on visualizing and abstracting complex data to make it comprehensible and easy to understand using visual representation of information. Analysis of crime and crime-related data has been steadily popularizing over the last decade, and this chapter aims at visualizing such data. Crime data for several different types of crime for many countries in the world has been collected, compiled, processed, analyzed, and visualized in this chapter. Predictive analysis of this data has also been performed using time series analysis. This chapter aims to create a hub where internet users can easily view and interpret this data.","PeriodicalId":206521,"journal":{"name":"Advancements in Security and Privacy Initiatives for Multimedia Images","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advancements in Security and Privacy Initiatives for Multimedia Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-2795-5.ch007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With massive advancements in the fields of data analysis and data mining, a new importance has been gained by data visualization. Data visualization focuses on visualizing and abstracting complex data to make it comprehensible and easy to understand using visual representation of information. Analysis of crime and crime-related data has been steadily popularizing over the last decade, and this chapter aims at visualizing such data. Crime data for several different types of crime for many countries in the world has been collected, compiled, processed, analyzed, and visualized in this chapter. Predictive analysis of this data has also been performed using time series analysis. This chapter aims to create a hub where internet users can easily view and interpret this data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ARIMA(自回归综合移动平均)模型的时间序列分析
随着数据分析和数据挖掘领域的巨大进步,数据可视化获得了新的重要性。数据可视化侧重于对复杂的数据进行可视化和抽象,使其易于理解和理解,使用信息的可视化表示。在过去的十年里,犯罪分析和与犯罪有关的数据一直在稳步普及,本章旨在将这些数据可视化。在本章中,世界上许多国家的几种不同类型的犯罪数据被收集、编译、处理、分析和可视化。使用时间序列分析对这些数据进行了预测分析。本章旨在创建一个中心,互联网用户可以很容易地查看和解释这些数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of Big Data in Medical Imaging Modalities to Extract Features Using Region Growing Segmentation, GLCM, and Discrete Wavelet Transform Time Series Analysis for Crime Forecasting Using ARIMA (Autoregressive Integrated Moving Average) Model Building an IPFS and Blockchain-Based Decentralized Storage Model for Medical Imaging Reversible Watermarking Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1